The oil palm (Elaeis guineensis) is native to many West African countries, where local populations have used its oil for culinary and other purposes. Large-scale plantations, established principally in tropical regions (Asia, Africa and Latin America), are mostly aimed at the production of oil, which is extracted from the fleshy mesocarp of the palm fruit, and endosperm or kernel oil. Palm oil is different from other plant and animal oils in that it contains 50% saturated fatty acids, 40% unsaturated fatty acids, and 10% polyunsaturated fatty acids. The fruit also contains components that can endow the oil with nutritional and health beneficial properties. These phytonutrients include carotenoids (alpha-,beta-,and gamma-carotenes), vitamin E (tocopherols and tocotrienols), sterols (sitosterol, stigmasterol and campesterol), phospholipids, glycolipids and squalene. In addition, it is recently reported that certain water-soluble powerful antioxidants, phenolic acids and flavonoids, can be recovered from palm oil mill effluent. Owing to its high content of phytonutrients with antioxidant properties, the possibility exists that palm fruit offers some health advantages by reducing lipid oxidation, oxidative stress and free radical damage. Accordingly, use of palm fruit or its phytonutrient-rich fractions, particularly water-soluble antioxidants, may confer some protection against a number of disorders or diseases including cardiovascular disease, cancers, cataracts and macular degeneration, cognitive impairment and Alzheimer's disease. However, whilst prevention of disease through use of these phytonutrients as in either food ingredients or nutraceuticals may be a worthwhile objective, dose response data are required to evaluate their pharmacologic and toxicologic effects. In addition, one area of concern about use of antioxidant phytonutrients is how much suppression of oxidation may be compatible with good health, as toxic free radicals are required for defence mechanisms. These food-health concepts would probably spur the large-scale oil palm (and monoculture) plantations, which are already seen to be a major cause of deforestation and replacement of diverse ecosystems in many countries. However, the environmental advantages of palm phytonutrients are that they are prepared from the readily available raw material from palm oil milling processes. Palm fruit, one of only a few fatty fruits, is likely to have an increasingly substantiated place in human health, not only through the provision of acceptable dietary fats, but also its characteristic protective phytonutrients.
Download full-text PDF |
Source |
---|
Environ Sci Pollut Res Int
January 2025
Faculty of Chemical & Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300, Kuantan, Pahang, Malaysia.
Palm kernel shell (PKS) and empty fruit bunch (EFB) are potential biomass resources for producing solid biofuel for energy applications. However, raw EFB and PKS are not uniform in size and pose rotting behavior. Torrefaction and co-pelletization are both effective methods to improve their combustion and mechanical characteristics.
View Article and Find Full Text PDFMol Pharm
January 2025
Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia.
The high content of vitamin E, including tocopherols and tocotrienols (TCF-TTE), in palm oil () has made it a promising candidate for the alternative treatment of atopic dermatitis (AD). However, the limited solubility of TCF-TTE has restricted its therapeutic efficacy. In this study, pluronic-based micelles (MCs) encapsulating palm oil-derived TCF-TTE were formulated with dissolvable microarray patch-micelles (DMP-MC) using carboxymethyl cellulose (CMC) synthesized from empty fruit bunches of palm to optimize its delivery for AD.
View Article and Find Full Text PDFFoods
January 2025
Department of Chemical Engineering, Faculty of Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia.
This research aimed to evaluate the use of edible coating from a combination of liquid smoke and turmeric extract as a preservative for mackerel at room temperature. Liquid smoke was obtained from the pyrolysis of oil palm empty fruit bunches (OPEFB) at a temperature of 380 °C and purified by distillation at 190 °C. Liquid smoke with a concentration of 3% was combined with turmeric extract at a ratio of 2, 4, 6, and 8 g/L (CLS 2:1, CLS 4:1, CLS 6:1 and CLS 8:1).
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Division of Physics and Semiconductor, Dongguk University, Seoul 04620, Republic of Korea.
Biomass, though a major energy source, remains underutilized. Biochar from biomass pyrolysis, with its high porosity and surface area, is especially useful as catalyst support, enhancing catalytic activity and reducing electron recombination in photocatalysis. Indonesia, the world's top palm oil producer, generated around 12 million tons of empty fruit bunches (EFBs) in 2023, making EFBs a promising biochar source.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Water Relations and Field Irrigation, Agricultural and Biological Research institute, National Research Centre, Giza, Egypt.
This study aimed to predict the toughness of date palm fruit (Barhi, Saqie, and Khodry varieties) at different ripening stages (Khalal, Rutab, and Tamar) using Hertz Theory by evaluating the physical and mechanical characteristics of the fruits. Physical measurements revealed that high moisture content in the Khalal stage led to larger dimensions and mass across all varieties, with Barhi dates showing a moisture content of 63.31%, which decreased to 32.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!