Rutinoside (rhamnoglucoside; rhamnose+glucose) addition has been examined extensively in the metabolism of flavonoids, however the effect of rutinoside on apoptosis-inducing activity of flavonoids is still unknown. In the present study, the two pairs of flavonoids of hesperetin (HT) and hesperidin (HD; HT-7-rutinose), and naringenin (NE) and naringin (NE-7-rutinose), were used to study their apoptosis-inducing activities in HL-60 cells. Both HD and NI are flavonoids which contain a rutinoside at the C7 of HT and NE, respectively. Results of the MTT assay showed that HT and NE, but not HD and NI, exhibited significant cytotoxic effect in HL-60 cells, accompanied by the dose- and time-dependent appearance of characteristics of apoptosis including an increase in DNA ladder intensity, morphological changes, appearance of apoptotic bodies, and an increase in hypodiploid cells by flow cytometry analysis. HT and NE, but not HD and NI, caused rapid and transient induction of caspase-3/CPP32 activity, but not caspase-1 activity, according to the cleavage of caspase-3 substrates poly(ADP-ribose) polymerase and D4-GDI proteins, the appearance of cleaved caspase-3 fragments detected in HT- or NE-, but not in HD- or NI-treated HL-60 cells. A decrease in the anti-apoptotic protein, Mcl-1, was detected in HT- and NE-treated HL-60 cells, whereas other Bcl-2 family proteins including Bax, Bcl-2, Bcl-XL, and Bag remained unchanged. The caspase-3 inhibitor, Ac-DEVD-FMK, but not the caspase-1 inhibitor, Ac-YVAD-FMK, attenuated HT- and NE-induced cell death. Interestingly, neither HT nor NE induced apoptosis in the mature monocytic cell line THP-1 and primary human polymorphonuclear cells, as characterized by a lack of DNA ladders, caspase-3 activation, poly(ADP-ribose) polymerase cleavage, and Mcl-1 decrease, compared with those in HL-60 cells. In addition, the rutinoside group in HD and NI was removed by hesperidinase and naringinase, accompanied by the production of HT and NE, respectively, according to HPLC analysis. Accordingly, hesperidinase and naringinase digestion recovered the apoptosis-inducing activity of HD and NI in HL-60 cells. Our experiments provide the first evidence to suggest that rutinoside in flavonoids prevents the induction of apoptosis, and that activation of the traditional caspase-3 cascade participates in HT- and NE-induced apoptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0006-2952(03)00455-6 | DOI Listing |
J Cell Immunol
January 2024
Department of Medicine, University of Washington, Seattle, Washington, U.S.A.
Neutrophil elastase () mutations are the most common cause of cyclic (CyN) and congenital neutropenia (SCN), two autosomal dominant disorders causing recurrent infections due to impaired neutrophil production. Granulocyte colony-stimulating factor (G-CSF) corrects neutropenia but has adverse effects, including bone pain and in some cases, an increased risk of myelodysplasia (MDS) and acute myeloid leukemia (AML). Hematopoietic stem cell transplantation is an alternative but is limited by its complications and donor availability.
View Article and Find Full Text PDFAnn Med
December 2025
Department of Pulmonary and Critical Care Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China.
Objective: The prognosis for severe asthma is poor, and the current treatment options are limited. The methyl-CpG binding domain protein 2 (MBD2) participates in neutrophil-mediated severe asthma through epigenetic regulation. Neutrophil extracellular traps (NETs) play a critical role in the pathogenesis of severe asthma.
View Article and Find Full Text PDFChem Biol Drug Des
January 2025
Department of Pharmacology and Toxicology, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
Target cyclooxygenase 2 (COX-2) and 5-lipoxygenase (5-LOX) inhibitors; 5-([2,5-Dihydroxybenzyl]amino)salicylamides (Compounds 1-11) were examined for potential anticancer activity, with a trial to assess the underlying possible mechanisms. Compounds were assessed at a single dose against 60 cancer cell lines panel and those with the highest activity were tested in the five-dose assay. COMPARE analysis was conducted to explore potential mechanisms underlying their biological activity.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland.
The synthesis of ()-1-(1,3-diphenylallyl)-1-1,2,4-triazoles and related compounds as anti-mitotic agents with activity in breast cancer was investigated. These compounds were designed as hybrids of the microtubule-targeting chalcones, indanones, and the aromatase inhibitor letrozole. : A panel of 29 compounds was synthesized and examined by a preliminary screening in estrogen receptor (ER) and progesterone receptor (PR)-positive MCF-7 breast cancer cells together with cell cycle analysis and tubulin polymerization inhibition.
View Article and Find Full Text PDFWorld J Oncol
February 2025
Department of Cell Biology and Genetics, Qiqihar Medical University, Qiqihar, Heilongjiang, China.
Background: Uncoupling protein 2 (UCP2) is essential for maintaining redox homeostasis and regulating energy metabolism. Abnormal expression of UCP2 has been associated with various tumors, including leukemia. Genipin (GEN), a specific inhibitor of UCP2, has a long history of use in traditional Chinese medicine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!