Essential role of glycosaminoglycans in Fgf signaling during mouse gastrulation.

Cell

Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10021, USA.

Published: September 2003

In vitro studies have suggested that proteoglycans facilitate signaling by mammalian growth factors, but genetic evidence supporting this role has been lacking. Here, we characterize the ENU-induced mutation lazy mesoderm (lzme), which disrupts the single mouse gene encoding UDP-glucose dehydrogenase (Ugdh), an enzyme required for the synthesis of the glycosaminoglycan (GAG) side chains of proteoglycans. lzme mutants arrest during gastrulation with defects in migration of mesoderm and endoderm, a phenotype similar to that of mutants in the fibroblast growth factor (Fgf) pathway. Analysis of the expression of molecular markers indicates that Fgf signaling is blocked in lzme mutant embryos. In contrast, signaling by the growth factors Nodal and Wnt3, which are also essential during mouse gastrulation, appears to be normal in lzme embryos. The results demonstrate that proteoglycans are required during mouse gastrulation specifically to promote Fgf signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0092-8674(03)00715-3DOI Listing

Publication Analysis

Top Keywords

fgf signaling
12
mouse gastrulation
12
growth factors
8
signaling
5
essential role
4
role glycosaminoglycans
4
fgf
4
glycosaminoglycans fgf
4
mouse
4
signaling mouse
4

Similar Publications

Embryonic Mammary Gland Morphogenesis.

Adv Exp Med Biol

January 2025

Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland.

Embryonic mammary gland development unfolds with the specification of bilateral mammary lines, thereafter progressing through placode, bud, and sprout stages before branching morphogenesis. Extensive epithelial-mesenchymal interactions guide morphogenesis from embryogenesis to adulthood. Two distinct mesenchymal tissues are involved, the primary mammary mesenchyme that harbors mammary inductive capacity, and the secondary mesenchyme, the precursor of the adult stroma.

View Article and Find Full Text PDF

The receptor tyrosine kinase EphB4 is involved in tumor angiogenesis, proliferation, and metastasis. Designed ankyrin repeat proteins (DARPins) binding to the EphB4 extracellular domain were identified from a combinatorial library using phage display. Surface plasmon resonance (SPR) allowed us to distinguish between DARPins that either compete with the EphB4 ligand ephrin-B2 for binding to a common site or target a different epitope.

View Article and Find Full Text PDF

BMP4 regulates differentiation of nestin-positive stem cells into melanocytes.

Cell Mol Life Sci

January 2025

Department of Anesthesiology, Shenzhen Children's Hospital, Yitian Road 7019, Shenzhen, 518000, China.

Hair follicle (HF) development and pigmentation are complex processes governed by various signaling pathways, such as TGF-β and FGF signaling pathways. Nestin + (neural crest like) stem cells are also expressed in HF stem cells, particularly in the bulge and dermal papilla region. However, the specific role and differentiation potential of these Nestin-positive cells within the HF remain unclear, especially regarding their contribution to melanocyte formation and hair pigmentation.

View Article and Find Full Text PDF

Fibroblast growth factors (FGFs) have diverse functions in the regulation of cell proliferation and differentiation in development, tissue maintenance, wound repair, and angiogenesis. The goal of this review paper is to (i) deliberate on the role of FGFs and FGF receptors (FGFRs) in different cancers, (ii) present advances in FGF-targeted cancer therapies, and (iii) explore cell signaling mechanisms that explain how FGF expression becomes dysregulated during cancer development. FGF is often mutated and overexpressed in cancer and the different FGF and FGFR isoforms have unique expression patterns and distinct roles in different cancers.

View Article and Find Full Text PDF

Physical activity improves myocardial structure, function and resilience via complex, incompletely defined mechanisms. We explored effects of 1-2 wks swim training on cardiac and systemic phenotype in young male C57Bl/6 mice. Two wks forced swimming (90 min twice daily) resulted in cardiac hypertrophy (22% increase in heart:body weight, P<0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!