Nuclear Overhauser effect (NOE) data are an indispensable source of structural information in biomolecular structure determination by NMR spectroscopy. The number and type of experimental restraints used in the structure calculation and the RMS deviation of the restraints are usually reported. We present a new method for quantifying the information contained in the experimental NMR restraints. The method is based on a description of the structure in distance space and concepts derived from information theory. It allows for an objective description of the amount of available experimental information, which we show to be related to the positional uncertainty of the NMR ensemble. The measure of information presented is not affected by redundancy in the experimental restraints. Using various examples, we show that the method successfully identifies the crucial restraints in a structure determination: those restraints that are both important and unique. Finally, we demonstrate that the method can detect a wider range of redundancy in experimental datasets when compared to currently available methods. Because our method describes the quantitative evaluation of experimental NMR restraints, we propose the acronym QUEEN.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja035440f | DOI Listing |
Langmuir
January 2025
College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
A novel pH-responsive full-bio-based surfactant (Ca-S) containing a dynamic covalent bond is synthesized using renewable cashew phenol, 5-chloro-2-furanaldehyde, and taurine. The structure of Ca-S is characterized by Fourier transform infrared spectroscopy (FTIR) and H nuclear magnetic resonance (NMR) analysis. Limonene containing oil-in-water (O/W) microemulsions are prepared on the basis of the Ca-S surfactant and are applied to the remediation of oil-contaminated soil under low-energy conditions at ambient temperature.
View Article and Find Full Text PDFAlzheimers Dement
January 2025
Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.
Introduction: Traditional multivariate methods for neuroimaging studies overlook the interdependent relationship between brain features. This study addresses this gap by analyzing relative brain volumetric patterns to capture how Alzheimer's disease (AD) and genetics influence brain structure along the disease continuum.
Methods: This study analyzed data from participants across the AD continuum from the Alzheimer's and Families (ALFA) and Alzheimer's Disease Neuroimaging Initiative (ADNI) studies.
Front Neurosci
January 2025
Graduate Program in Electrical Engineering, Federal University of Pará - UFPA, Belém, Brazil.
Introduction: Wavelet thresholding techniques are crucial in mitigating noise in data communication and storage systems. In image processing, particularly in medical imaging like MRI, noise reduction is vital for improving visual quality and accurate analysis. While existing methods offer noise reduction, they often suffer from limitations like edge and texture loss, poor smoothness, and the need for manual parameter tuning.
View Article and Find Full Text PDFACS Omega
January 2025
School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom.
Seventeen 3-alkylaminoquinoxaline-2(1)-thiones and 3-alkyloxyquinoxaline-2(1)-thiones were prepared by a novel thionation protocol from the readily available quinoxaline-2,3-dione in excellent overall yields. This protocol starts with the chlorination of dione using thionyl chloride to give 2,3-dichloroquinoxaline followed by the reaction with equimolar amounts of -nucleophiles (primary amines and secondary amines) or -nucleophiles (phenols and alcohols) to principally afford 2-alkanamino-3-chloroquinoxalines or 2-alkyloxy-3-chloroquinoxalines, respectively. The chloroquinoxalines reacted with the thionation reagent -cyclohexyl dithiocarbamate cyclohexyl ammonium salt in ethanol under reflux to principally give the corresponding quinoxalin-2-yl cyclohexylcarbamodithioate that finally rearranges to give the corresponding thiones in 76-93% overall yields.
View Article and Find Full Text PDFACS Omega
January 2025
Science Division, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates.
Determining the structure of sitagliptin is crucial for ensuring its effectiveness and safety as a DPP-4 inhibitor used to treat type 2 diabetes. Accurate structure determination is vital for both drug development and maintaining quality control in manufacturing. This study integrates the advanced techniques of solid-state nuclear magnetic resonance (NMR) spectroscopy, three-dimensional (3D) electron diffraction, and density functional theory (DFT) calculations to investigate the structural intricacies of sitagliptin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!