The authors compared the accuracy of clinical detection (by 279 physician observers) of internuclear ophthalmoparesis (INO) with that of quantitative infrared oculography. For the patients with mild adduction slowing, INO was not identified by 71%. Intermediate dysconjugacy was not detected by 25% of the evaluators. In the most severe cases, INO was not identified by only 6%. Oculographic techniques significantly enhance the precision of INO detection compared to the clinical exam.

Download full-text PDF

Source
http://dx.doi.org/10.1212/01.wnl.0000085863.54218.72DOI Listing

Publication Analysis

Top Keywords

accuracy clinical
8
clinical detection
8
quantitative infrared
8
infrared oculography
8
ino identified
8
ino
5
detection ino
4
ino corroboration
4
corroboration quantitative
4
oculography authors
4

Similar Publications

Background: In the contemporary realm of health care, laboratory tests stand as cornerstone components, driving the advancement of precision medicine. These tests offer intricate insights into a variety of medical conditions, thereby facilitating diagnosis, prognosis, and treatments. However, the accessibility of certain tests is hindered by factors such as high costs, a shortage of specialized personnel, or geographic disparities, posing obstacles to achieving equitable health care.

View Article and Find Full Text PDF

Background: While expert optometrists tend to rely on a deep understanding of the disease and intuitive pattern recognition, those with less experience may depend more on extensive data, comparisons, and external guidance. Understanding these variations is important for developing artificial intelligence (AI) systems that can effectively support optometrists with varying degrees of experience and minimize decision inconsistencies.

Objective: The main objective of this study is to identify and analyze the variations in diagnostic decision-making approaches between novice and expert optometrists.

View Article and Find Full Text PDF

For noninvasive light-based physiological monitoring, optimal wavelengths of individual tissue components can be identified using absorption spectroscopy. However, because of the lack of sensitivity of hardware at longer wavelengths, absorption spectroscopy has typically been applied for wavelengths in the visible (VIS) and near-infrared (NIR) range from 400 to 1,000 nm. Hardware advancements in the short-wave infrared (SWIR) range have enabled investigators to explore wavelengths in the ~1,000 nm to 3,000 nm range in which fall characteristic absorption peaks for lipid, protein, and water.

View Article and Find Full Text PDF

Objective: To conduct a meta-analysis assessing the diagnostic performance of the node reporting and data system (Node-RADS) for detecting lymph node (LN) invasion.

Method: We performed a systematic literature search of online scientific publication databases from inception up to July 31, 2024. We used the quality assessment of diagnostic accuracy studies-2 (QUADAS-2) to assess the study quality, and heterogeneity was determined by the Q-test and measured with I statistics.

View Article and Find Full Text PDF

Generative artificial intelligence enables the generation of bone scintigraphy images and improves generalization of deep learning models in data-constrained environments.

Eur J Nucl Med Mol Imaging

January 2025

Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Spitalgasse 23, Vienna, 1090, Austria.

Purpose: Advancements of deep learning in medical imaging are often constrained by the limited availability of large, annotated datasets, resulting in underperforming models when deployed under real-world conditions. This study investigated a generative artificial intelligence (AI) approach to create synthetic medical images taking the example of bone scintigraphy scans, to increase the data diversity of small-scale datasets for more effective model training and improved generalization.

Methods: We trained a generative model on Tc-bone scintigraphy scans from 9,170 patients in one center to generate high-quality and fully anonymized annotated scans of patients representing two distinct disease patterns: abnormal uptake indicative of (i) bone metastases and (ii) cardiac uptake indicative of cardiac amyloidosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!