Physiological and antioxidant responses of cotton and spurred anoda under interference and mild drought.

J Exp Bot

Department of Entomology, Plant Pathology and Weed Science, Skeen Hall, New Mexico State University, Las Cruces, NM 88003, USA.

Published: October 2003

The influence of plant interference and a mild drought on gas exchange and oxidative stress was investigated using potted plants of two cotton species (Gossypium hirsutum L. cv. Delta Pine 5415, and Gossypium barbadense L. cv. Pima S-7) and spurred anoda (Anoda cristata L. Schlecht.) of the Malvaceae. Without interference, cotton and spurred anoda had similar net photosynthesis (Pnet) but different pigment profiles. Stomatal conductance (gs) and transpiration rate (E) were greater in spurred anoda than cotton. Net photosynthesis and biomass in cotton were reduced more by spurred anoda interference than by intraspecific interference. With interference, the xanthophyll cycle conversion state and alpha-tocopherol levels increased in cotton, but remained unchanged in spurred anoda. Catalase, ascorbate peroxidase (APX) and glutathione reductase (GR) activities were not influenced by plant interference. Without interference, spurred anoda had lower APX, and similar catalase and GR activities compared with cotton. Mild drought increased APX activity more than 40% in cotton, and 26% in spurred anoda. Upon drought recovery, drought-induced APX activity was still higher in cotton, and GR activity was higher in previously drought-stressed cotton and spurred anoda plants compared with well-watered plants. The greater impact of spurred anoda interference than intraspecific interference on cotton biomass is due mainly to reduced carbon gain in cotton.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erg251DOI Listing

Publication Analysis

Top Keywords

spurred anoda
40
cotton
12
cotton spurred
12
anoda interference
12
mild drought
12
anoda
11
spurred
10
interference
10
interference mild
8
plant interference
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!