Cardiovascular calcification is a common consequence of diabetes. High fat diets induce diabetes and arterial calcification in male low density lipoprotein receptor (LDLR) -/- mice; calcification occurs via Msx2 signaling that promotes the osteogenic differentiation of arterial myofibroblasts. We studied regulation of arterial osteogenesis by human parathyroid hormone (PTH) (1-34) (also called teriparatide) in LDLR -/- mice fed diabetogenic diets for 4 weeks. LDLR -/- mice were treated with vehicle or 0.4 mg/kg of PTH(1-34) subcutaneously five times/week. Gene expression was determined from single aortas and hind limb RNA by fluorescence reverse transcription-PCR. Valve calcification was determined by histological staining of cardiac sections using image analysis to quantify valve leaflet mineralization. PTH(1-34) increased bone mineral content (by dual energy x-ray absorptiometry) in LDLR -/- mice, with induction of osseous osteopontin (OPN) expression and serum OPN levels (>150 nM); PTH(1-34) did not significantly change serum glucose, lipids, body weight, or fat mass. PTH(1-34) suppressed aortic OPN and Msx2 expression >50% and decreased cardiac valve calcification 80% (8.3 +/- 1.5% versus 1.4 +/- 0.5%; p < 0.001). Of the known circulating regulators of vascular calcification (OPN, osteoprotegerin, and leptin), PTH(1-34) regulated only serum OPN. We therefore studied actions of PTH(1-34) and OPN in vitro on cells induced to mineralize with Msx2. OPN (5-50 nM) reversed Msx2-induced mineralization. PTH(1-34) inhibited mineralization by 40% and down-regulated Msx2 in aortic myofibroblasts. PTH(1-34) inhibits vascular calcification and aortic osteogenic differentiation via direct actions and potentially via circulating OPN. PTH(1-34) exerts beneficial actions at early stages of macrovascular disease responses to diabetes and dyslipidemia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M308825200 | DOI Listing |
Front Endocrinol (Lausanne)
January 2025
Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou Medical University, Jinzhou, Liaoning, China.
Objective: The impact of lipid-lowering medications on chronic kidney disease (CKD) remains a subject of debate. This Mendelian randomization (MR) study aims to elucidate the potential effects of lipid-lowering drug targets on CKD development.
Methods: We extracted 11 genetic variants encoding targets of lipid-lowering drugs from published genome-wide association study (GWAS) summary statistics, encompassing LDLR, HMGCR, PCSK9, NPC1L1, APOB, ABCG5/ABCG8, LPL, APOC3, ANGPTL3, and PPARA.
Sci Rep
January 2025
Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand.
Nanobodies (Nbs) hold great potential to replace conventional antibodies in various biomedical applications. However, conventional methods for their discovery can be time-consuming and expensive. We have developed a reliable protein selection strategy that combines magnetic activated cell sorting (MACS)-based screening of yeast surface display (YSD) libraries and functional ligand-binding identification by Tat-based recognition of associating proteins (FLI-TRAP) to isolate antigen-specific Nbs from synthetic libraries.
View Article and Find Full Text PDFTissue Eng Regen Med
January 2025
Department of Pediatrics, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea.
Background: Exogenous Cushing's syndrome, which results from prolonged glucocorticoid treatment, is associated with metabolic abnormalities. Previously, we reported the inhibitory effect of tonsil-derived mesenchymal stem cell conditioned medium (T-MSC CM) on glucocorticoid signal transduction. In this study, we investigated the therapeutic efficacy of T-MSCs in a mouse model of exogenous Cushing's syndrome.
View Article and Find Full Text PDFIndian J Nephrol
July 2024
Department of Clinical Chemistry, Theodor Bilharz Research Institute, Giza, Egypt.
Background: The low-density lipoprotein receptor () is essential for regulating intracellular cholesterol levels. Mutations in the gene can cause a increase in LDL cholesterol levels in the blood, elevating the vulnerability to cardiovascular disease (CVD). This study evaluated the correlation between the rs688 polymorphism and CVD risk in chronic kidney disease (CKD).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy.
The Low Density Lipoprotein receptors (LDLRs) gene family includes 15 receptors: very low-density lipoprotein receptor (VLDLR), LDLR, Sorting-related receptor with A-type repeats (SORLA), and 12 LDL receptor-related proteins (LRPs): LRP1, LRP1B, LRP2, LRP3, LRP4, LRP5, LRP6, LRP8, LRP10, LRP11, LRP12, LRP13. Most of these are involved in the transduction of key signals during embryonic development and in the regulation of cholesterol homeostasis. In oviparous animals, the VLDL receptor is also known as VTGR since it facilitates the uptake of vitellogenin in ovary.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!