In Drosophila, both the phenotypic and evolutionary effect of temperature on adult size involves alterations to larval resource processing and affects other life-history traits, that is, development time but most notably, larval survival. Therefore, thermal evolution of adult body size might not be independent of simultaneous adaptation of larval traits to resource availability. Using experimental evolution lines adapted to high and low temperatures at different levels of food, we show that selection pressures interact in shaping larval resource processing. Evolution on poor food invariably leads to lower resource acquisition suggesting a cost to feeding behavior. However, following low temperature selection, lower resource acquisition led to a higher adult body size, probably by more efficient allocation to growth. In contrast, following high temperature selection, low resource acquisition benefited larval survival, possibly by reducing feeding-associated costs. We show that evolved differences to larval resource processing provide a possible proximate mechanism to variation in a suite of correlated life-history traits during adaptation to different climates. The implication for natural populations is that in nature, thermal evolution drives populations to opposite ends of an adult size versus larval survival trade-off by altering resource processing, if resource availability is limited.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.0014-3820.2003.tb00590.xDOI Listing

Publication Analysis

Top Keywords

resource processing
16
larval resource
12
larval survival
12
resource acquisition
12
resource
9
experimental evolution
8
adult size
8
life-history traits
8
thermal evolution
8
adult body
8

Similar Publications

Post-translational modifications of histone H3 on lysine 9, specifically acetylation (H3K9ac) and tri-methylation (H3K9me3), play a critical role in regulating chromatin accessibility. However, the role of these modifications in lineage segregation in the mammalian blastocyst remains poorly understood. We demonstrate that di- and tri-methylation marks, H3K9me2 and H3K9me3, decrease during cavitation and expansion of the rabbit blastocyst.

View Article and Find Full Text PDF

Background: Seed banks are a vital resource for preserving plant species diversity globally. However, seedling establishment and survival rates from banked seeds can be poor. Despite a growing appreciation for the role of seed-associated microbiota in supporting seed quality and plant health, our understanding of the effects of conventional seed banking processes on seed microbiomes remains limited.

View Article and Find Full Text PDF

Deep oil reservoirs are becoming increasingly significant fields of hydrocarbon exploration in recent decades. Hydrothermal fluid flow is deemed as a potentially crucial factor affecting the occurrence of deep oil reservoirs, such as enhancing porosity/permeability of reservoirs, accelerating oil generation and thermal cracking, and modifying organic properties of crude oils. Understanding the interplay between hydrothermal fluids and crude oils would provide useful constraints for reconstructing hydrocarbon accumulation processes and predicting the distribution patterns of crude oils.

View Article and Find Full Text PDF

Gibberellin-3 induced dormancy and suppression of flower bud formation in pitaya (Hylocereus polyrhizus).

BMC Plant Biol

January 2025

Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.

Background: Flowering is a complex, finely regulated process involving multiple phytohormones and transcription factors. However, flowering regulation in pitaya (Hylocereus polyrhizus) remains largely unexamined. This study addresses this gap by investigating gibberellin-3 (GA3) effects on flower bud (FB) development in pitaya.

View Article and Find Full Text PDF

Efficient enantioselective separation is a critical process in pharmaceutical and chemical industries for the production of chiral compounds. Herein, we developed a novel approach for the efficient enantioselective separation of primary amines using supercritical fluid chromatography (SFC) with a commercially available SFC column, Cel1. The key factors of separation, including cosolvent ratios, total cosolvent percentages, and temperature, were systematically assessed in this study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!