This study addresses competition between the Paramecium bursaria and zoochlorella-endosymbiosis and the infusoria Paramecium caudatum in a closed aquatic system. The system is a natural model of a simple biotic cycle. P. bursaria consumes glucose and oxygen released by its zoochlorella and releases nitrogenous compounds and carbon dioxide necessary for algal photosynthesis. P. caudatum was fed on bacteria. It was shown that the infusoria P. bursaria united in one cycle with Chlorella had a higher competitive ability than P. caudatum. With any initial percentage of the infusoria in the mixed culture, the end portion of P. bursaria reached 90-99%, which was significantly higher than the end potion of the P. caudatum population. It is assumed that the sustenance expenditures of P. caudatum were greater than those of the endosymbiotic paramecium, i.e. the closing of the components into a biotic cycle leads to a decrease in sustenance expenditures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0273-1177(03)00117-0DOI Listing

Publication Analysis

Top Keywords

closed aquatic
8
aquatic system
8
biotic cycle
8
sustenance expenditures
8
caudatum
5
competition natural
4
natural manmade
4
manmade biotic
4
biotic cycles
4
cycles closed
4

Similar Publications

We expect to develop self-sustaining extraterrestrial colonies, and they will approach being closed ecological systems. Using simple closed ecosystems containing Daphnia magna, three species of algae, and microbes, we tested multiple conditions to study long-term organism survival, which is only possible with adequate nutrient recycling. Closed and open systems behaved differently from one another at high nitrate concentrations; in closed systems, the animals were dead by day 14; in open systems, the Daphnia populations persisted beyond 273 days.

View Article and Find Full Text PDF

Infectious Spleen and Kidney Necrosis Virus ORF093R and ORF102R Regulate Glutamate Metabolic Reprogramming to Support Virus Proliferation by Interacting with c-Myc.

Int J Mol Sci

January 2025

Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Key Laboratory of fishery Drug Development, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.

Glutamine metabolism is essential for infectious spleen and kidney necrosis virus (ISKNV) replication. Glutaminase 1 (GLS1), the key enzyme of the glutamine metabolism, and c-Myc positively regulate ISKNV infection, while c-Myc is closely correlated with GLS1. However, the regulatory mechanism among ISKNV, c-Myc and glutamine metabolism remains unclear.

View Article and Find Full Text PDF

GRAMMAR-Lambda Delivers Efficient Understanding of the Genetic Basis for Head Size in Catfish.

Biology (Basel)

January 2025

Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China.

The shape of the skull plays a crucial role in the evolution and adaptation of species to their environments. In the case of aquaculture fish, the size of the head is also an important economic trait, as it is linked to fillet yield and ornamental value. This study applies our GRAMMAR-Lambda method to perform a genome-wide association study analysis on loci related to head size in catfish.

View Article and Find Full Text PDF

Is cranial anatomy indicative of fossoriality? A case study of the mammaliaform Hadrocodium wui.

Anat Rec (Hoboken)

January 2025

School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, UK.

Determining the ecology of fossil species presents considerable challenges due to the often fragmentary preservation of specimens. The mammaliaform Hadrocodium wui from the Jurassic of China is known only from the cranium and mandible but may have had a fossorial lifestyle. It shares morphological similarities with talpid moles and soricid shrews and is closely related to other fossorial mammaliaforms.

View Article and Find Full Text PDF

More Than Meets the Eye: Unraveling the Interactions Between Skin Microbiota and Habitat in an Opportunistic Amphibian.

Microb Ecol

January 2025

Conservation Genomics Research Unit and Animal, Environmental and Antique DNA Platform, Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, TN, Italy.

With amphibians still holding the record as the most threatened class of terrestrial vertebrates, their skin microbiota has been shown to play a relevant role in their survival in a fast-changing world. Yet little is known about how abiotic factors associated with different aquatic habitats impact these skin microorganisms. Here we chose the yellow-bellied toad (Bombina variegata), a small anuran that colonizes a wide range of wetland habitats, to investigate how the diversity and composition of both its bacterial and fungal skin communities vary across different habitats and with water characteristics (temperature, pH, and dissolved oxygen) of these habitats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!