Chronic brain hypoperfusion (CBH) using permanent occlusion of both common carotid arteries in an aging rat model, has been shown to mimic human mild cognitive impairment (MCI), an acknowledged high risk condition that often converts to Alzheimer's disease. An aging rat model was used to determine whether hippocampal nitric oxide (NO) is abnormally expressed following CBH for two or eight weeks. At each time point, spatial memory was measured with the Morris water maze and hippocampal A beta 1-40/1-42 concentrations were obtained using sandwich ELISA. Real-time amperometric measures of NO representing the constitutive isoforms of neuronal nitric oxide synthase (nNOS) and endothelial (e)NOS were also taken at each time point to ascertain whether NO levels changed as a result of CBH, and if so, whether such NO changes preceded or followed any memory or amyloid-beta pathology. We found that two weeks after CBH, NO hippocampal levels were upregulated nearly four-fold when compared to nonoccluded rats but no alteration in spatial memory of A beta products were observed at this time point. By contrast, NO concentration had declined to control levels by eight weeks but spatial memory was found significantly impaired and A beta 1-40 (but not A beta 1-42) had increased in the CBH group when compared to control rats. Since changes in shear stress are known to upregulate eNOS but generally not nNOS, these results suggest that shear stress induced by CBH hyperactivated vascular NO derived from eNOS in the first two weeks as a reaction by the capillary endothelium to maintain homeostasis of local cerebral blood flow. The return of vascular NO to basal levels after eight weeks of CBH may have triggered metabolic changes within hippocampal cells resulting in hippocampal dysfunction as reflected by spatial memory impairment and by accumulation of A beta 1-40 peptide. In conclusion, our study shows that CBH initiates spatial memory loss in aging rats thus mimicking human MCI and also increases A beta 1-40 in the hippocampus. The memory and amyloid changes are preceded by NO upregulation in the hippocampus. These preliminary findings may be important in understanding, at least in part, the molecular mechanisms that precede memory impairment during chronic brain ischemia and as such, the pre-clinical stage leading to Alzheimer's disease.

Download full-text PDF

Source
http://dx.doi.org/10.1179/016164103101201931DOI Listing

Publication Analysis

Top Keywords

spatial memory
20
beta 1-40
16
nitric oxide
12
chronic brain
12
time point
12
memory
9
hippocampal nitric
8
memory loss
8
brain hypoperfusion
8
cbh
8

Similar Publications

Greater neighborhood disadvantage is associated with poorer global cognition. However, less is known about the variation in the magnitude of neighborhood effects across individual cognitive domains and whether the strength of these associations differs by individual-level factors. The current study investigated these questions in a community sample of older adults ( = 166, mean age = 72.

View Article and Find Full Text PDF

Social isolation is a risk factor for cognitive impairment. Adolescents may be particularly vulnerable to these effects, because they are in a critical period of development marked by significant physical, hormonal, and social changes. However, it is unclear if the effects of social isolation on learning and memory are similar in both sexes or if they persist into adulthood after a period of recovery.

View Article and Find Full Text PDF

Dissociating the Roles of Alpha Oscillation Sub-Bands in Visual Working Memory.

Neuroimage

January 2025

Institute of Brain and Psychological Sciences, Sichuan Normal University, 610066 Sichuan, China; Brain and Cognitive Neuroscience Research Center, Liaoning Normal University, 116029 Liaoning, China. Electronic address:

Alpha oscillations play a critical role in visual working memory (VWM), but the specific contributions of lower and upper alpha sub-bands remain unclear. To address this, we employed a whole-field change detection paradigm to investigate how alpha power modulation and decoding accuracy differ between these sub-bands in response to varying set sizes and spatial extents of memory arrays. Our results revealed that lower alpha (8-9 Hz) exhibits widespread event-related desynchronization (ERD) during the early maintenance phase, which increases with set size and reflects attentional allocation to individual memory items.

View Article and Find Full Text PDF

Working-memory load decoding model inspired by brain cognition based on cross-frequency coupling.

Brain Res Bull

January 2025

School of Life and Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; Institute for Advanced Sciences, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; Guangyang Bay Laboratory, Chongqing Institute for Brain and Intelligence, Chongqing 400064, China. Electronic address:

Working memory, a fundamental cognitive function of the brain, necessitates the evaluation of cognitive load intensity due to limited cognitive resources. Optimizing cognitive load can enhance task performance efficiency by preventing resource waste and overload. Therefore, identifying working memory load is an essential area of research.

View Article and Find Full Text PDF

Background: Diabetes is known to cause cognitive impairments and synaptic dysfunction. This study investigates the effects of (EO), (CT), Vitamin C, and metformin on cognitive function and synaptic density (SYN) in diabetic rats. This work aims to evaluate the impact of various treatments on spatial learning, memory, and SYN in a diabetic rat model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!