Organomagnesium reagents occupy a central position in synthetic organic and organometallic chemistry. Recently, the halogen-magnesium exchange has considerably extended the range of functionalized Grignard reagents available for synthetic purposes. Functional groups such as esters, nitriles, iodides, imines, or even nitro groups can be present in a wide range of aromatic and heterocyclic organomagnesium reagents. Also various highly functionalized alkenyl magnesium species can be prepared. These recent developments as well as new applications of organomagnesium reagents in cross-coupling reactions and amination reactions will be covered in this Review.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.200300579 | DOI Listing |
Chem Sci
October 2024
Division of Applied Chemistry and Frontier Chemistry Center, Faculty of Engineering, Hokkaido University Sapporo Hokkaido Japan
Organobarium reagents are of interest as homologues of the Grignard reagents based on organomagnesium compounds due to their unique reactivity as well as regio- and stereoselectivity. However, reactions involving organobarium reagents are less developed in comparison to reactions involving Grignard reagents due to the lack of a simple and economical synthetic method and their high reactivity. To the best of our knowledge, there is no established method for the direct synthesis of organobarium compounds from commercially available bulk barium metal and organic halides.
View Article and Find Full Text PDFChemistry
December 2024
Department of Physics, Stockholm University, Albanova University Centre, SE-106 91, Stockholm, Sweden.
The addition of Grignard reagents to ketones is a well-established textbook reaction. However, a comprehensive understanding of its mechanism has only recently begun to emerge. X-ray spectroscopy, because of its high selectivity and sensitivity, is the ideal tool for distinguishing between an ensemble of competing pathways.
View Article and Find Full Text PDFMacromol Rapid Commun
August 2024
Universite Claude Bernard Lyon 1, CPE Lyon, CNRS UMR 5128, Laboratoire CP2M, Equipe PCM, Villeurbanne, 69616, France.
Coordinative chain transfer polymerization (CCTP) of ethylene and its copolymerization with 1,3-butadiene is conducted in toluene at 80 °C using a combination of {(MeSi(CH))Nd(μ-BH)[(μ-BH)Li(THF)]} (1) metal complex and various organomagnesium compounds used as chain transfer agents including n-butyl-n-octyl-magnesium (BOMAG), n-butyl-mesityl-magnesium (n-BuMgMes), n-butyl-magnesium chloride (n-BuMgCl), n-pentyl-magnesium bromide (n-CHMgBr), pentanediyl-1,5-di(magnesium bromide) (PDMB) and isobutyl-magnesium chloride (i-BuMgCl). Kinetics and performance in terms of control of the (co)polymerization are comparatively discussed particularly considering the presence of ether and the nature of the organomagnesium compounds employed. Taking advantage of the well-known reactivity between nitrile and molecular organomagnesium compounds, the functionalization of the chains is further carried out by deactivation of the polymerization medium with benzonitrile or methoxybenzonitrile compounds leading to ketone ω-functionalized chains.
View Article and Find Full Text PDFJ Org Chem
June 2024
Enamine Limited, 78 Winston Churchill Street, 02094 Kyiv, Ukraine.
A conceptual strategy for a formal α-alkylation of α-methylene ketones was developed. Diverse 1° and 2° alkyl substituents were generated in the α-position of various ketones via synthesis of enaminone (step 1) and treatment with organomagnesium (step 2) with subsequent catalytic hydrogenation (step 3, 1° alkyl) or organocopper reagents (step 4, 2° alkyl). Tolerance toward ester, Boc-protected amine, and α-fluoro-substituted ketone moieties was demonstrated.
View Article and Find Full Text PDFMolecules
March 2024
Laboratorio de Química Sintética Sostenible (QuimSinSos), Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles" (IUQOEM), Facultad de Química, Universidad de Oviedo, E-33071 Oviedo, Spain.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!