Formation of amyloid beta (Abeta) is a complex kinetic and thermodynamic process, dependent on peptidepeptide interactions that may be modulated by other proteins. We found that site-directed antibodies toward peptide (glutamic acid, phenyl alanine, arginine, histidine) EFRH sequences 3-6 of the N-terminal region of beta-amyloid peptide (AbetaP) suppress in vitro formation of Abeta and dissolve already formed fibrillar amyloid. These so-called chaperone-like properties of monoclonal antibodies led to the development of a new immunological approach toward Alzheimer's disease (AD) treatment. Production and performance of anti-Abeta antibodies into the transgenic mouse model of AD showed that these antibodies may be delivered from the periphery to the central nervous system, preventing the formation of Abeta and dissolving amyloid plaques. Moreover, immunization with Abeta protects transgenic mice from the learning and age-related memory deficits that occur in AD. These data support the hypotheses that AbetaP plays a central role in AD, and site-directed antibodies that modulate AbetaP conformation might lead toward immunotherapy of the disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1385/JMN:20:3:283 | DOI Listing |
Trials
December 2024
Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
Background: Vancomycin, an antibiotic with activity against methicillin-resistant Staphylococcus aureus (MRSA), is frequently included in empiric treatment for community-acquired pneumonia (CAP) despite the fact that MRSA is rarely implicated in CAP. Conducting polymerase chain reaction (PCR) testing on nasal swabs to identify the presence of MRSA colonization has been proposed as an antimicrobial stewardship intervention to reduce the use of vancomycin. Observational studies have shown reductions in vancomycin use after implementation of MRSA colonization testing, and this approach has been adopted by CAP guidelines.
View Article and Find Full Text PDFOrphanet J Rare Dis
December 2024
Post Graduate School in Allergology and Internal Medicine "Guido Baccelli", Department of Precision and Regenerative Medicine and Ionian Area-(DiMePRe-J), School of Medicine, Aldo Moro University of Bari, Bari, 70124, Italy.
Background: Mucopolysaccharidosis (MPS) type 1 S and type 2 are rare lysosomal storage disorders characterized by impaired enzyme production, resulting in glycosaminoglycans accumulation within lysosomes. Enzyme Replacement Therapy (ERT) with laronidase and idursulfase are first line treatments, respectively. However, infusion-related hypersensitivity reactions (HR) may lead to ERT discontinuation.
View Article and Find Full Text PDFSci Rep
December 2024
Clinical Teaching Hospital of Medical School, Nanjing Children's Hospital, Nanjing University, Nanjing, 210008, China.
Gastric cancer (GC) is characterized by notable heterogeneity and the impact of molecular subtypes on treatment and prognosis. The role of programmed cell death (PCD) in cellular processes is critical, yet its specific function in GC is underexplored. This study applied multiomics approaches, integrating transcriptomic, epigenetic, and somatic mutation data, with consensus clustering algorithms to classify GC molecular subtypes and assess their biological and immunological features.
View Article and Find Full Text PDFSci Rep
December 2024
Sydney School of Veterinary Science, University of Sydney, Camperdown, NSW, 2006, Australia.
Chlamydiosis is a common infectious disease impacting koalas and is a major cause of population decline due to resulting mortality and infertility. Polymorphisms of major histocompatibility complex (MHC) genes influence chlamydial disease outcomes in several species but koala studies have produced variable results. We aimed to identify the MHC II DAB and DBB repertoire of koalas from Liverpool Plains, NSW, a population heavily impacted by chlamydiosis.
View Article and Find Full Text PDFBioelectrochemistry
December 2024
Louisiana Cancer Research Center, School of Medicine, 1700 Tulane Ave, New Orleans, Louisiana 70112, USA.
The folate receptor (FR) is a well-known biomarker that is overexpressed in many cancer cells, making it a valuable target for cancer diagnostics and therapeutic strategies. However, identifying cancer biomarkers remains a challenge due to factors such as lengthy procedures, high costs, and low sensitivity. This study presents the development of a novel, cost-effective biosensor designed for the detection of FR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!