The depositing in brain of amyloid beta peptide (Abeta), which is formed by the cleavage of amyloid precursor protein (APP), is likely an etiologic factor in Alzheimer's disease (AD). Of the different forms of Abeta, Abeta(1-42) causes fibril formation and increases aggregation at elevated levels, which can lead to neuronal death. It is hypothesized that if the levels of Abeta, particularly Abeta(1-42), were reduced, then the onset of AD would be slowed or possibly prevented. Therefore, we are using peptide nucleic acids (PNAs) targeted to APP, as well as other key proteins, to try to decrease plasma and brain levels of Abeta(1-40) and Abeta(1-42). This research project was designed to utilize the expertise of our laboratory in the use of PNAs, a third-generation antisense or antigene molecule, to knock down proteins in brain. Antisense compounds specifically knock down the expression of a particular protein by inhibiting translation at the level of mRNA. On the other hand, antigene compounds knock down expression at the level of transcription. For experiments involving antisense strategies, there are several advantages to using PNAs as opposed to the traditional oligonucleotide molecules. We report here the ongoing studies with mice and rats with PNAs targeting APP, as well as BACE.

Download full-text PDF

Source
http://dx.doi.org/10.1385/JMN:20:3:261DOI Listing

Publication Analysis

Top Keywords

peptide nucleic
8
nucleic acids
8
amyloid precursor
8
precursor protein
8
abeta abeta1-42
8
app well
8
compounds knock
8
knock expression
8
acids targeted
4
targeted amyloid
4

Similar Publications

Palmitate potentiates the SMAD3-PAI-1 pathway by reducing nuclear GDF15 levels.

Cell Mol Life Sci

January 2025

Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.

Nuclear growth differentiation factor 15 (GDF15) reduces the binding of the mothers' against decapentaplegic homolog (SMAD) complex to its DNA-binding elements. However, the stimuli that control this process are unknown. Here, we examined whether saturated fatty acids (FA), particularly palmitate, regulate nuclear GDF15 levels and the activation of the SMAD3 pathway in human skeletal myotubes and mouse skeletal muscle, where most insulin-stimulated glucose use occurs in the whole organism.

View Article and Find Full Text PDF

Vitamin D-VDR and vitamin A-RAR affect IL-13 and IFNγ secretion from human CD4 T cells directly and indirectly via competition for their shared co-receptor RXR.

Scand J Immunol

January 2025

LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

The effects of vitamin D and vitamin A in immune cells are mediated through the vitamin D receptor (VDR) and retinoic acid receptor (RAR), respectively. These receptors share the retinoid X receptor (RXR) co-factor for transcriptional regulation. We investigated the effects of active vitamin D (1,25(OH)D) and 9-cis retinoic acid (9cRA) on T helper (T)1 and T2 cytokines and transcription factors in primary human blood-derived CD4 T cells.

View Article and Find Full Text PDF

circ_0004662 contributes to colorectal cancer progression by interacting with hnRNPM.

Int J Oncol

February 2025

Department of Laboratory Medicine, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, P.R. China.

Circular (circ)RNAs participate in colorectal cancer (CRC) occurrence and progression. However, the role of hsa_circ_0004662 (circ_0004662) in CRC remains unknown. Reverse transcription‑quantitative PCR noted high expression of circ_0004662 in CRC compared with normal colorectal epithelial cells.

View Article and Find Full Text PDF

The diverse functional roles of RNA within cells have led to a growing interest in developing RNA-binding fluorescent probes to investigate RNA functions. In particular, the probes for double-stranded RNA (dsRNA) structures are of significant value given the importance of the secondary and tertiary RNA structures on their biologic functions. This review highlights our recent efforts on the development of triplex-forming peptide nucleic acid (TFP)-based probes for fluorescence sensing of dsRNA structures.

View Article and Find Full Text PDF

A single microfluidic device for multi-omics analysis sample preparation.

Lab Chip

January 2025

Spectrométrie de Masse Biologique et Protéomique SMBP, ESPCI Paris, LPC CNRS UMR 8249, PSL University, 10 Rue Vauquelin, F-75005 Paris, France.

Combining different "omics" approaches, such as genomics and proteomics, is necessary to generate a detailed and complete insight into microbiome comprehension. Proper sample collection and processing and accurate analytical methods are crucial in generating reliable data. We previously developed the ChipFilter device for proteomic analysis of microbial samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!