Melanopsin in the circadian timing system.

J Mol Neurosci

Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, QC, H3G 1M8, Canada.

Published: November 2004

In mammals, circadian rhythms are generated by a light-entrainable oscillator located in the hypothalamic suprachiasmatic nucleus (SCN). Light signals reach the SCN via a dedicated retinal pathway, the retinohypothalamic tract (RHT). One question that continues to elude scientists is whether the circadian system has its own dedicated photoreceptor or photoreceptors. It is well established that conventional photoreceptors, rods and cones, are not required for circadian photoreception, suggesting that the inner retinal layer might contribute to circadian photoreception. Melanopsin, a novel photo pigment expressed in retinal ganglion cells (RGCs), has been proposed recently as a candidate circadian photoreceptor. Melanopsin-containing RGCs are intrinsically photosensitive, form part of the RHT, and contain neurotransmitters known to play a critical role in the circadian response to light. Furthermore, melanopsin-containing RGCs do not depend on inputs from rods and cones to transmit light signals to the SCN. However, based on a review of the available information about melanopsin and on new data from our laboratory, we propose that melanopsin, in itself, is not necessary for circadian photoreception. In fact, it appears that of the known photoreceptor systems, none, in and of itself, is necessary for circadian photoreception. Instead, it appears that within the photoreceptive systems there is some degree of redundancy, each contributing in some way to photic entrainment.

Download full-text PDF

Source
http://dx.doi.org/10.1385/JMN:21:1:73DOI Listing

Publication Analysis

Top Keywords

circadian photoreception
16
melanopsin circadian
8
circadian
8
light signals
8
rods cones
8
melanopsin-containing rgcs
8
melanopsin
4
circadian timing
4
timing system
4
system mammals
4

Similar Publications

Zebrafish Dark-Dependent Behavior Requires Phototransduction by the Pineal Gland.

J Pineal Res

November 2024

School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel.

Located dorsally underneath a thin translucent skull in many teleosts, the pineal gland is a photoreceptive organ known as a key element of the circadian clock system. Nevertheless, the presence of additional routes of photoreception presents a challenge in determining its specific roles in regulating photic-related behavior. Here, we show the importance of the pineal gland in mediating a prolonged motor response of zebrafish larvae to sudden darkness, both as a photodetector and as a circadian pacemaker.

View Article and Find Full Text PDF

Light profoundly impacts many aspects of human physiology and behaviour, including the synchronization of the circadian clock, the production of melatonin, and cognition. These effects of light, termed the non-visual effects of light, have been primarily investigated in laboratory settings, where light intensity, spectrum and timing can be carefully controlled to draw associations with physiological outcomes of interest. Recently, the increasing availability of wearable light loggers has opened the possibility of studying personal light exposure in free-living conditions where people engage in activities of daily living, yielding findings associating aspects of light exposure and health outcomes, supporting the importance of adequate light exposure at appropriate times for human health.

View Article and Find Full Text PDF

Daily rhythms of locomotor activity and transcript levels of non-visual opsins in the brain of the blind Mexican cavefish (Astyanax mexicanus).

Comp Biochem Physiol A Mol Integr Physiol

January 2025

Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real (Cádiz), Spain; Instituto Universitario de Investigación Marina (INMAR) and Campus de Excelencia Internacional del Mar (CEIMAR), Puerto Real (Cádiz), Spain; The European University of the Seas (SEA-EU), Cádiz, Spain. Electronic address:

Most organisms possess endogenous circadian clocks that synchronise their physiology and behaviour with environmental cycles, with the light-dark (LD) cycle being the most potent synchronising signal. Consequently, it can be hypothesised that animals that have evolved in the dark, as in caves or deep sea, may no longer possess a functional light-entrained biological clock. In this research, the blind cavefish Astyanax mexicanus was selected as a model organism to investigate the potential effects of daily light conditions on the circadian timekeeping mechanisms.

View Article and Find Full Text PDF

Living organisms, which are constantly exposed to cyclical variations in their environment, need a high degree of plasticity in their visual system to respond to daily and seasonal fluctuations in lighting conditions. In Drosophila melanogaster, the visual system is a complex tissue comprising different photoreception structures that exhibit daily rhythms in gene expression, cell morphology, and synaptic plasticity, regulated by both the central and peripheral clocks. In this review, we briefly summarize the structure of the circadian clock and the visual system in Drosophila and comprehensively describe circadian oscillations in visual structures, from molecules to behaviors, which are fundamental for the fine-tuning of visual sensitivity.

View Article and Find Full Text PDF

Widespread direct photoentrainment in zebrafish peripheral tissues is linked to diverse non-visual opsins. To explore whether this broadly distributed photosensitivity is specific to zebrafish or is a general teleost feature, we investigated hepatic photosynchronization in goldfish. First, we focused on the opsin 7 family (OPN7, a key peripheral novel opsin in zebrafish), investigating its presence in the goldfish liver.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!