Molecular mechanisms underlying mineralocorticoid receptor (MR)-mediated gene expression are not fully understood but seem to largely depend upon interactions with specific coregulators. To identify novel human MR (hMR) molecular partners, yeast two-hybrid screenings performed using the N-terminal domain as bait, allowed us to isolate protein inhibitor of activated signal transducer and activator of transcription (PIAS)1 and PIASxbeta, described as SUMO (small ubiquitin-related modifier) E3-ligases. Specific interaction between PIAS1 and hMR was confirmed by glutathione-S-transferase pull-down experiments and N-terminal subdomains responsible for physical contacts were delineated. Transient transfections demonstrated that PIAS1 is a corepressor of aldosterone-activated MR transactivation but has no significant effect on human glucocorticoid receptor transactivation. The agonist or antagonist nature of the bound ligand also determines PIAS1 corepressive action. We provided evidence that PIAS1 conjugated SUMO-1 to hMR both in vitro and in vivo. Deciphering the unique sumoylation pattern of hMR, which possesses five consensus SUMO-1 binding sites, by combinatorial lysine substitutions, revealed a major impact of sumoylation on hMR properties. Using a murine mammary tumor virus promoter, PIAS1 action was independent of sumoylation whereas with glucocorticoid response element promoter, PIAS1 corepressive action depended on hMR sumoylation status. Taken together, our results identify a novel function for PIAS1 which interacts with the N-terminal domain of hMR and represses its ligand-dependent transcriptional activity, at least in part, through SUMO modifications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/me.2003-0299 | DOI Listing |
Viruses
December 2024
Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
Background: Marek's disease (MD) is a pathology affecting chickens caused by Marek's disease virus (MDV), an acute transforming alphaherpesvirus of the genus . MD is characterized by paralysis, immune suppression, and the rapid formation of T-cell (primarily CD4+) lymphomas. Over the last 50 years, losses due to MDV infection have been controlled worldwide through vaccination; however, these live-attenuated vaccines are non-sterilizing and potentially contributed to the virulence evolution of MDV field strains.
View Article and Find Full Text PDFMolecules
January 2025
Department of Chemistry & Biochemistry, Miami University, Oxford, OH 45056, USA.
Epigallocatechin gallate (EGCg), an abundant phytochemical in green tea, is an antioxidant that also binds proteins and complex metals. After gastrointestinal absorption, EGCg binds to serum albumin in the hydrophobic pocket between domains IIA and IIIA and overlaps with the Sudlow I site. Serum albumin also has two metal binding sites, a high-affinity N-terminal site (NTS) site that selectively binds Cu(II), and a low-affinity, less selective multi-metal binding site (MBS).
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia.
Alzheimer's disease (AD) pathogenesis is correlated with the membrane content of various lipid species, including cholesterol, whose interactions with amyloid precursor protein (APP) have been extensively explored. Amyloid-β peptides triggering AD are products of APP cleavage by secretases, which differ depending on the APP and secretase location relative to ordered or disordered membrane microdomains. We used high-resolution NMR to probe the interactions of the cholesterol analog with APP transmembrane domain in two membrane-mimicking systems resembling ordered or perturbed lipid environments (bicelles/micelles).
View Article and Find Full Text PDFGenes (Basel)
January 2025
Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA.
Background: Casein kinase I protein Hrr25 plays important roles in many cellular processes, including autophagy, vesicular trafficking, ribosome biogenesis, mitochondrial biogenesis, and the DNA damage response in . Pin4 is a multi-phosphorylated protein that has been reported to be involved in the cell wall integrity (CWI) pathway and DNA damage response. Pin4 was reported to interact with Hrr25 in yeast two-hybrid and large-scale pulldown assays.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
Background: Eukaryotic RNA polymerase I consists of 12 or 11 core subunits and three dissociable subunits, Rrn3, A34, and A49. The A34 and A49 subunits exist as a heterodimer. In silico analysis of the A34 family of transcription factors demonstrates a commonly shared domain structure despite a lack of sequence conservation, as well as N-terminal and C-terminal disordered regions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!