Platelet-activating factor (PAF) is a potent phospholipid mediator involved in various disease states such as allergic asthma, atherosclerosis and psoriasis. The human PAF receptor (PAFR) is a member of the G protein-coupled receptor family. Following PAF stimulation, cells become rapidly desensitized; this refractory state can be maintained for hours and is dependent on PAFR phosphorylation, internalization, and down-regulation. In this report, we characterized ligand-induced, long term PAFR desensitization, and pathways leading to its degradation. Some GPCRs are known to be targeted to proteasomes for degradation while others traffic via the early/late endosomes toward lysosomes. Specific inhibitors of lysosomal proteases and inhibitors of the proteasome were effective in reducing the ligand-induced PAFR down-regulation by 40 and 25%, respectively, indicating the importance of receptor targeting to both lysosomes and proteasomes in long term cell desensitization to PAF. The effects of the proteasome and lysosomal protease inhibitors were additive and, together, completely blocked ligand-induced degradation of PAFR. Using dominant-negative Rab5 and 7 and colocalization of the PAFR with the early endosome autoantigen I (EEAI) or transferrin, we confirmed that ligand-induced PAFR down-regulation was Rab5/7-dependent and involved lysosomal degradation. In addition, we also demonstrated that PAFR was ubiquitinated in an agonist-independent manner. However, a dominant negative ubiquitin ligase (NCbl) reduced PAFR ubiquitination and inhibited ligand-induced but not basal receptor degradation. Our results indicate that PAFR degradation can occur via both the proteasome and lysosomal pathways and ligand-stimulated degradation is ubiquitin-dependent.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M304082200DOI Listing

Publication Analysis

Top Keywords

pafr
10
platelet-activating factor
8
long term
8
ligand-induced pafr
8
pafr down-regulation
8
proteasome lysosomal
8
degradation
7
receptor
5
ligand-induced
5
trafficking ubiquitination
4

Similar Publications

Muramyl dipeptide potentiates lipoteichoic acid-induced nitric oxide production via TLR2/NOD2/PAFR signaling pathways.

Front Immunol

December 2024

Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea.

Lipoteichoic acid (LTA) and peptidoglycan (PGN) are considered as key virulence factors of , which is a representative sepsis-causing Gram-positive pathogen. However, cooperative effect of LTA and PGN on nitric oxide (NO) production is still unclear despite the pivotal roles of NO in initiation and progression of sepsis. We here evaluated the cooperative effects of LTA (SaLTA) and muramyl dipeptide (MDP), the minimal structure of PGN, on NO production in both a mouse macrophage-like cell line, RAW 264.

View Article and Find Full Text PDF

This review investigates the pathogenic processes through which crosses the blood-brain barrier (BBB) to cause meningitis, with a focus on the interaction with host receptors in the central nervous system (CNS). a primary cause of bacterial meningitis, utilizes unique receptor-mediated pathways to infiltrate the BBB. The bacterial interaction with the platelet-activating factor receptor (PAFR) and the polymeric immunoglobulin receptor (pIgR) is looked at in this study.

View Article and Find Full Text PDF

Since 2000s, we have outlined the multifaceted role of inflammation in several aspects of cancer, via specific inflammatory mediators, including the platelet activating factor (PAF) and PAF-receptor (PAFR) related signaling, which affect important inflammatory junctions and cellular interactions that are associated with tumor-related inflammatory manifestations. It is now well established that disease-related unresolved chronic inflammatory responses can promote carcinogenesis. At the same time, tumors themselves are able to promote their progression and metastasis, by triggering an inflammation-related vicious cycle, in which PAF and its signaling play crucial role(s), which usually conclude in tumor growth and angiogenesis.

View Article and Find Full Text PDF

Astrocytes are important regulators of neuronal development and activity. Their activation plays a key role in the response to many central nervous system (CNS) pathologies. However, reactive astrocytes are a double-edged sword as their chronic or excessive activation may negatively impact CNS physiology, for example, via abnormal modulation of synaptogenesis and synapse function.

View Article and Find Full Text PDF

Re-evaluation of the canonical PAF pathway in cutaneous anaphylaxis.

Biochim Biophys Acta Mol Cell Biol Lipids

January 2025

Department of Lipid Life Science, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan; Department of Medical Lipid Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. Electronic address:

Platelet-activating factor (PAF) is a potent classical lipid mediator that plays a critical role in various diseases such as allergy and nervous system disorders. In the realm of allergy, previous studies suggested that PAF is generated in response to extracellular stimuli and contributes to allergic reactions via PAF receptor (PAFR). However, the sources of endogenous PAF and its pathophysiological dynamics remain largely elusive in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!