S-(2,3-bispalmitoyloxypropyl)Cys-Gly-Asp-Pro-Lys-His-Pro-Lys-Ser-Phe (FSL-1) derived from Mycoplasma salivarium stimulated NF-kappaB reporter activity in human embryonic kidney 293 (HEK293) cells transfected with Toll-like receptor 2 (TLR2) or cotransfected with TLR2 and TLR6, but not in HEK293 cells transfected with TLR6, in a dose-dependent manner. The activity was significantly higher in HEK293 cells transfected with both TLR2 and TLR6 than in HEK293 cells transfected with only TLR2. The deletion mutant TLR2(DeltaS40-I64) (a TLR2 mutant with a deletion of the region of Ser(40) to Ile(64)) failed to activate NF-kappaB in response to FSL-1. The deletion mutant TLR2(DeltaC30-S39) induced NF-kappaB reporter activity, but the level of activity was significantly reduced compared with that induced by wild-type TLR2. A TLR2 point mutant with a substitution of Glu(178) to Ala (TLR2(E178A)), TLR2(E180A), TLR2(E190A), and TLR2(L132E) induced NF-kappaB activation when stimulated with FSL-1, M. salivarium lipoproteins, and Staphylococcus aureus peptidoglycans, but TLR2(L107E), TLR2(L112E) (a TLR2 point mutant with a substitution of Leu(112) to Glu), and TLR2(L115E) failed to induce NF-kappaB activation, suggesting that these residues are essential for their signaling. Flow cytometric analysis demonstrated that TLR2(L115E), TLR2(L112E), and TLR2(DeltaS40-I64) were expressed on the cell surface of the transfectants as wild-type TLR2 and TLR2(E190A) were. In addition, these mutants, except for TLR2(E180A), functioned as dominant negative form of TLR2. This study strongly suggested that the extracellular region of Ser(40)-Ile(64) and leucine residues at positions 107, 112, and 115 in a leucine-rich repeat motif of TLR2 are involved in the recognition of mycoplasmal diacylated lipoproteins and lipopeptides and in the recognition of S. aureus peptidoglycans.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.171.7.3675DOI Listing

Publication Analysis

Top Keywords

hek293 cells
16
cells transfected
16
aureus peptidoglycans
12
tlr2
11
leucine residues
8
residues positions
8
positions 107
8
107 112
8
112 115
8
115 leucine-rich
8

Similar Publications

Promoted read-through and mutation against pseudouridine-CMC by an evolved reverse transcriptase.

Commun Biol

January 2025

Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA.

Pseudouridine (Ψ) is an abundant RNA chemical modification that plays critical biological functions. Current Ψ detection methods are limited in identifying Ψs at base-resolution in U-rich sequence contexts, where Ψ occurs frequently. Here we report "Mut-Ψ-seq" that utilizes the classic N-cyclohexyl N'-(2-morpholinoethyl)carbodiimide (CMC) agent and an evolved reverse transcriptase ("RT-1306") for Ψ mapping at base-resolution.

View Article and Find Full Text PDF

Cryo-EM structure of an activated GPR4-Gs signaling complex.

Nat Commun

January 2025

Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.

Article Synopsis
  • G protein-coupled receptor 4 (GPR4) is part of a group called proton-sensing GPCRs that respond to pH changes and regulate various physiological functions, with its overactivation noted in acidic tumor environments.
  • Researchers used cryo-electron microscopy to determine the 3D structures of zebrafish GPR4 at different pH levels, revealing important histidine and acidic residues that affect its proton-sensing ability, alongside key triad residues.
  • The study also identified a cluster of aromatic residues in GPR4's orthosteric pocket that may play a crucial role in transferring signals to the inside of the cell, laying the groundwork for further research on psGPCRs.
View Article and Find Full Text PDF

Recent advances in gene editing and precise regulation of gene expression based on CRISPR technologies have provided powerful tools for the understanding and manipulation of gene functions. Fusing RNA aptamers to the sgRNA of CRISPR can recruit cognate RNA-binding protein (RBP) effectors to target genomic sites, and the expression of sgRNA containing different RNA aptamers permit simultaneous multiplexed and multifunctional gene regulations. Here, we report an intracellular directed evolution platform for RNA aptamers against intracellularly expressed RBPs.

View Article and Find Full Text PDF

Constitutive surface expression of the thromboxane A2 receptor is Pim kinase-dependent.

J Thromb Haemost

January 2025

Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom; Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom. Electronic address:

Background: The thromboxane A2 receptor (TPαR) plays an important role in the amplification of platelet responses during thrombosis. Receptor activity is regulated by internalization and receptor desensitization. The mechanism by which constitutive surface expression of the TPαR is regulated is unknown.

View Article and Find Full Text PDF

Calcium/calmodulin dependent protein kinase II inhibitor 1 (Camk2n1) is closely associated with a peak logarithm of odds score in quantitative trait loci for systolic blood pressure. Increased Camk2n1 mRNA expression has been specifically observed in the kidneys of hypertension mouse models. However, the precise role of Camk2n1 in the kidney remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!