Phage type 99 of Salmonella enterica subsp. enterica serovar Typhimurium variant Copenhagen strains isolated from pigeons were examined for the presence of genotypic and phenotypic characteristics. The pulsed-field gel electrophoresis patterns obtained with XbaI and BlnI from 38 pigeon strains were compared with those obtained from 89 porcine, poultry, and human strains of variant Copenhagen. Identical patterns with XbaI and four closely related patterns with BlnI were obtained with the pigeon strains, whereas 16 XbaI patterns were found with the other strains. The XbaI patterns of the pigeon strains showed a low genetic similarity to the patterns of the porcine, poultry, and human strains and invariably showed a low-molecular-weight band that was absent in the majority of the other strains. The virulence genes shdA, spvR, pefA, sopE, and spvB were uniformly present in six pigeon isolates representing the genetic diversity found with BlnI. These six pigeon-derived strains were highly cytotoxic for pigeon macrophages compared to three porcine strains. After experimental infection of pigeons with a pigeon strain, clinical symptoms, fecal shedding, and colonization of internal organs were more pronounced than those after infection with a porcine strain. These data suggest that the phage type 99 strains used in this study are highly adapted to pigeons and should be classified as a host-restricted lineage of the serovar Typhimurium.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC201047 | PMC |
http://dx.doi.org/10.1128/IAI.71.10.6068-6074.2003 | DOI Listing |
Adv Sci (Weinh)
December 2024
Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
This study investigates how microbiome colonization influences the development of intestinal type 3 immunity in neonates. The results showed that reduced oxygen levels in the small intestine of neonatal rats induced by Saccharomyces boulardii accelerated microbiome colonization and type 3 immunity development, which protected against Salmonella enterica serovar Typhimurium infection. Microbiome maturation increased the abundance of microbiome-encoded bile salt hydrolase (BSH) genes and hyocholic acid (HCA) levels.
View Article and Find Full Text PDFIran J Microbiol
December 2024
Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
Background And Objectives: The most common cause of severe foodborne salmonellosis is Typhimurium. Its interaction with intestinal epithelial cells is little known. Lactic acid bacteria (LAB) were recognized as a prominent probiotic gastrointestinal microbiota of humans and animals that confer health-promoting and protective effects.
View Article and Find Full Text PDFPol J Vet Sci
September 2024
National Diagnostic and Research Veterinary Medical Institute, National Food Safety Center, 15 Pencho Slaveykov blvd, 1606, Sofia, Bulgaria.
Salmonella spp. is an important zoonotic and foodborne pathogen. It is spread worldwide and represents a public health risk.
View Article and Find Full Text PDFFASEB J
December 2024
State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
Salmonella enterica serovar Typhimurium (S. Typhimurium) poses a serious threat to human and animal health, and there is an urgent need to develop new therapeutic agents. In our in vivo study, ginsenoside Ro (Ro) reduced the mortality rate of S.
View Article and Find Full Text PDFRes Vet Sci
December 2024
Botswana University of Agriculture and Natural Resources, P/Bag BR 0027, Gaborone, Botswana.
Approximately 20 million cases and 0.15 million human fatalities worldwide each year are caused by Salmonellosis. A mechanistic compartmental model based on ordinary differential equations is proposed to evaluate the effects of temperature and pH on the transmission dynamics of Salmonellosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!