AI Article Synopsis

  • The rabbit model is key in distinguishing between Mycobacterium tuberculosis and Mycobacterium bovis due to their differing disease outcomes in rabbits, with M. tuberculosis typically clearing and M. bovis causing chronic disease and death.
  • Infection experiments showed that significantly more M. tuberculosis bacteria were needed to form noticeable lesions in rabbits, indicating innate resistance, and different strains like Erdman and H37Rv varied in pathogenicity.
  • Genetic analysis of the strains revealed differences that may help identify important M. tuberculosis genes related to disease severity in humans.

Article Abstract

The rabbit model of tuberculosis has been used historically to differentiate between Mycobacterium tuberculosis and Mycobacterium bovis based on their relative virulence in this animal host. M. tuberculosis infection in market rabbits is cleared over time, whereas infection with M. bovis results in chronic, progressive, cavitary disease leading to death. Because of the innate resistance of commercial rabbits to M. tuberculosis, 320 to 1,890 log-phase, actively growing inhaled bacilli were required to form one grossly visible pulmonary tubercle at 5 weeks. The range of inhaled doses required to make one tubercle allows us to determine the relative pathogenicities of different strains. Fewer inhaled organisms of the M. tuberculosis Erdman strain were required than of M. tuberculosis H37Rv to produce a visible lesion at 5 weeks. Furthermore, with the Erdman strain, only 7 of 15 rabbits had healed lesions at 16 to 18 weeks; among the other animals, two had chronic, progressive cavitary disease, a phenotype usually seen only with M. bovis infection. Genotypic investigation of the Erdman strain with an H37Rv-based microarray identified gene differences in the RD6 region. Southern blot and PCR structural genetic analysis showed significant differences between M. tuberculosis strains in this region. Correlation of the relative pathogenicity, including disease severity, in the rabbit model with the strain genotype may help identify stage-specific M. tuberculosis genes important in human disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC201108PMC
http://dx.doi.org/10.1128/IAI.71.10.6004-6011.2003DOI Listing

Publication Analysis

Top Keywords

rabbit model
12
erdman strain
12
tuberculosis
10
mycobacterium tuberculosis
8
model tuberculosis
8
chronic progressive
8
progressive cavitary
8
cavitary disease
8
disease
5
strains mycobacterium
4

Similar Publications

In larger, translational animal models, manual measurements of longitudinal bone growth using fluorochrome labels is tedious and may be prone to less rigor due to variations in reader experience, sampling differences, and photobleaching that limits the repeatability of measurements. This study assesses the reliability of three different digital methods to assist in measurement of distance between pulsed fluorochrome labels. Forty-five tibial physes from skeletally immature New Zealand White rabbits were pulsed with fluorochrome labels and measured using Fully Manual Technique (FMT), Manual Digital Measurement (MDM), Computer Assisted Image Processing (AIP), and Fully Automated Measurement (FAM).

View Article and Find Full Text PDF

Purpose: Gastrostomy is the commonly used enteral feeding technology. The clinical risks caused by tube dislodgement and peristomal site infection are the common complications before complete tract maturation after gastrostomy. However, there is currently no relevant research to promote gastrostomy wound treatment and tract maturation.

View Article and Find Full Text PDF

Objective: The purpose of this study was to investigate the timing and mode of failure of metallic screw-type suture anchors used to attach artificial tendons to bone in an New Zealand White rabbit model.

Study Design: Metal suture anchors with braided composite sutures of varying sizes (United States Pharmacopeia (USP) size 1, 2, or 5) were used to secure artificial tendons replacing both the Achilles and tibialis cranialis tendons in 12 female New Zealand White rabbits. Artificial tendons were implanted either at the time of (immediate replacement,  = 8), or four/five weeks after (delayed replacement,  = 4) resection of the biological tendon.

View Article and Find Full Text PDF

Reproducing the microstructure of the natural cornea remains a significant challenge in achieving the mechanical and biological functionality of artificial corneas. Therefore, the development of cascade structures that mimic the natural extracellular matrix (ECM), achieving both macro-stability and micro-structure, is of critical importance. This study proposes a novel, efficient, and general photo-functionalization strategy for modifying natural biomaterials.

View Article and Find Full Text PDF

Diabetic wounds are characterized by chronic inflammation, reduced angiogenesis, and insufficient collagen deposition, leading to impaired healing. Extracellular vesicles (EVs) derived from adipose-derived mesenchymal stem cells (ADSC) offer a promising cell-free therapeutic strategy, yet their efficacy and immunomodulation can be enhanced through bioactivation. In this study, we developed calcium silicate (CS)-stimulated ADSC-derived EVs (CSEV) incorporated into collagen hydrogels to create a sustained-release system for promoting diabetic wound healing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!