There is increasing evidence that by facilitating translocation of Shiga toxin (Stx) across the intestinal epithelium and by transporting bound toxin to remote sites such as the renal endothelium, polymorphonuclear leukocytes (PMNs) play a key role in the pathogenesis of Shiga-toxigenic Escherichia coli (STEC) disease. Plasma levels of PMN-attracting CXC chemokines such as interleukin-8 (IL-8) also appear to correlate in humans with the severity of disease. Thus, the capacity of STEC strains to elicit CXC chemokine responses in intestinal epithelial cells may be a crucial step in pathogenesis. Accordingly, we attempted to determine which STEC factors are responsible for CXC chemokine induction in human colonic epithelial cells. Infection of Hct-8 cells with locus for enterocyte effacement (LEE)-negative STEC strains isolated from patients with severe STEC disease resulted in up-regulation of IL-8, macrophage inflammatory protein 2alpha (MIP-2alpha), MIP-2beta, and ENA-78 mRNA significantly higher and earlier than that elicited by several LEE-positive STEC strains, including the O157:H7 strain EDL933. Similarly, levels of IL-8 protein in LEE-negative STEC-infected Hct-8 culture supernatants were significantly higher than in LEE-positive STEC-infected culture supernatants. The difference in responses could not be attributed to the expression or nonexpression of LEE genes, the presence or absence of an STEC megaplasmid, or differences in O serogroups or in the type or amount of Stx produced. Interestingly, however, several of the LEE-negative STEC strains eliciting the strongest chemokine responses belonged to flagellar serotype H21. Incubation of Hct-8 cells with isolated H21 flagellin elicited IL-8 and MIP-2alpha responses similar to those seen in the presence of the most potent LEE-negative STEC strains. Deletion of the fliC gene, but not the stx(2) gene, largely abolished the capacity of O113:H21 LEE-negative STEC strain 98NK2 to elicit IL-8 and MIP-2alpha responses in Hct-8 cells. Taken together, these data suggest that although Stx is capable of inducing CXC chemokine responses, the elevated responses seen in cells infected with certain STEC strains are largely attributable to the production of flagellin.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC201041 | PMC |
http://dx.doi.org/10.1128/IAI.71.10.5623-5632.2003 | DOI Listing |
Microorganisms
January 2025
Department of Food Science and Biotechnology, College of Bionano Technology, Gachon University, Seongnam 13120, Republic of Korea.
Shiga toxin-producing (STEC) infections have increased in humans, animals, and the food industry, with ready-to-eat (RTE) food products being particularly susceptible to contamination. The prevalence of multidrug-resistant strains has rendered the current control strategies insufficient to effectively control STEC infections. Herein, we characterized the newly isolated STEC phage vB_ESM-pEJ01, a polyvalent phage capable of infecting and species, and assessed its efficacy in reducing STEC in vitro and food matrices.
View Article and Find Full Text PDFJ Med Microbiol
January 2025
NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK.
Diarrhoeagenic (DEC) pathotypes are defined by genes located on mobile genetic elements, and more than one definitive pathogenicity gene may be present in the same strain. In August 2022, UK Health Security Agency (UKHSA) surveillance systems detected an outbreak of hybrid Shiga toxin-producing /enterotoxigenic (STEC-ETEC) serotype O101:H33 harbouring both Shiga toxin () and heat-stable toxin (). These hybrid strains of DEC are a public health concern, as they are often associated with enhanced pathogenicity.
View Article and Find Full Text PDFEpidemiol Infect
January 2025
Gastrointestinal Infections and Food Safety (One Health) Division, Clinical and Public Health Group, UK Health Security Agency, London, UK.
In July 2022, a genetically linked and geographically dispersed cluster of 12 cases of Shiga toxin-producing (STEC) O103:H2 was detected by the UK Health Security Agency using whole genome sequencing. Review of food history questionnaires identified cheese (particularly an unpasteurized brie-style cheese) and mixed salad leaves as potential vehicles. A case-control study was conducted to investigate exposure to these products.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China; University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Applied Optics, Changchun, 130033, China; Key Laboratory of Advanced Manufacturing for Optical Systems, Chinese Academy of Sciences, Changchun, 130033, China. Electronic address:
Certain virulent strains of Escherichia coli (E. coli), notably the enterohemorrhagic serotype O157:H7, are recognized for causing diarrhea, gastroenteritis, and a range of illnesses that pose significant risks to public health and the safety of drinking water supplies. Early detection and management of E.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Department of Dairy Science, Faculty of Veterinary, Animal and Biomedical Sciences Sylhet Agricultural University Sylhet Bangladesh.
The emergence of antibiotic-resistant microorganisms has made antimicrobial resistance a global issue, and milk is a potential source for the propagation of resistant bacteria causing zoonotic diseases. Subclinical mastitis (SCM) cases, often overlooked and mixed with normal milk in dairy farms, frequently involve , which can spread through contaminated milk. We conducted this study to determine the prevalence of virulence genes, antibiotic resistance genes (ARGs), antimicrobial susceptibility, and the genetic relatedness of multidrug-resistant (MDR) Shiga toxin-producing (STEC) isolated from SCM milk.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!