AI Article Synopsis

  • Human salivary glands produce CD14, an innate immunity molecule, and secrete it into saliva, with concentrations highest in parotid saliva compared to whole saliva and serum.
  • Exposure to the bacteria Actinobacillus actinomycetemcomitans leads to increased IL-8 production in oral epithelial cells, which is further enhanced by whole and parotid saliva, although saliva alone doesn't induce IL-8.
  • Parotid saliva shows antibacterial properties against the bacteria, and the presence of CD14 is crucial for its invasion into cells and the resulting IL-8 production, highlighting its role in oral immune response.

Article Abstract

It has recently been shown that human salivary glands constitutively express CD14, an important molecule in innate immunity, and that a soluble form of CD14 is secreted in saliva. The concentration of CD14 in parotid (a serous gland) saliva was comparable to that in normal serum and 10-fold the amount in whole saliva, although the physiological function of saliva CD14 remained unclear. Actinobacillus actinomycetemcomitans is a periodontopathic bacterium and is able to invade oral epithelial cells. The present study showed that upon exposure to live A. actinomycetemcomitans Y4 for 2 h, human oral epithelial HSC-2 cells produced interleukin-8 (IL-8) for a further 24 h and whole saliva augmented the production induced by A. actinomycetemcomitans Y4. Parotid saliva showed a more pronounced effect on the production of IL-8 than whole saliva. Neither saliva preparation itself had IL-8-inducing activity. Parotid saliva exhibited antibacterial activity against a low concentration of A. actinomycetemcomitans Y4, but recombinant CD14 did not show the activity. The internalization of A. actinomycetemcomitans Y4 into HSC-2 cells was inhibited by cytochalasin B, indicating that the process was actin dependent, and depletion of CD14 from parotid saliva inhibited the invasion and, as a consequence, inhibited production of IL-8. Furthermore, human recombinant CD14 augmented invasion and IL-8 production. These results suggest that saliva CD14 promoted the invasion of oral epithelial cells by A. actinomycetemcomitans and consequently augmented the production of IL-8, playing an important role in innate immunity in the oral cavity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC201103PMC
http://dx.doi.org/10.1128/IAI.71.10.5598-5604.2003DOI Listing

Publication Analysis

Top Keywords

oral epithelial
16
epithelial cells
12
saliva
12
saliva cd14
12
parotid saliva
12
production il-8
12
cd14
9
actinobacillus actinomycetemcomitans
8
human oral
8
production saliva
8

Similar Publications

RNA modifications are emerging as critical cancer regulators that influence tumorigenesis and progression. Key modifications, such as N6-methyladenosine (mA) and 5-methylcytosine (mC), are implicated in various cellular processes. These modifications are regulated by proteins that write, erase, and read RNA and modulate RNA stability, splicing, translation, and degradation.

View Article and Find Full Text PDF

Purpose: Dimethyl fumarate (DMF), the first-line oral therapy for relapsing-remitting multiple sclerosis, is rapidly metabolized into monomethyl fumarate. The DMF oral administration provokes gastrointestinal discomfort causing treatment withdrawal. The present study aimed to develop an innovative formulation for DMF nasal administration.

View Article and Find Full Text PDF

The human skin and oral cavity harbor complex microbial communities, which exist in dynamic equilibrium with the host's physiological state and the external environment. This study investigates the microbial atlas of human skin and oral cavities using samples collected over a 10-month period, aiming to assess how both internal and external factors influence the human microbiome. We examined bacterial community diversity and stability across various body sites, including palm and nasal skin, saliva, and oral epithelial cells, during environmental changes and a COVID-19 pandemic.

View Article and Find Full Text PDF

Cheek swabs, heterogeneous samples consisting primarily of buccal epithelial cells, are widely used in pediatric DNA methylation studies and biomarker creation. However, the decrease in buccal proportion with age in adults remains unexamined in childhood. We analyzed cheek swabs from 4626 typically developing children 2-months to 20-years-old.

View Article and Find Full Text PDF

From Pathogenesis to Precision Medicine: Transformative Advances in Research and Treatment of Ameloblastoma.

Cancer Lett

January 2025

Department of Oral and Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology, National Clinical Research Center for Oral diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China. Electronic address:

Odontogenic neoplasms of the jaw are dominated by ameloblastoma (AM), a locally aggressive epithelial tumor with a significant propensity for recurrence. The World Health Organization's 2022 update to the AMclassification system underscores recent progress in comprehending its underlying mechanisms and refining clinical approaches. Contemporary research has yielded significant insights into the genetic underpinnings of AM, paving the way for the development of precision-based treatment strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!