Most cancer deaths are a consequence of resistance to conventional chemotherapy and radiation therapy. This may be attributable to unique phenotypic characteristics of solid tumors. We have exploited two well-described characteristics of solid tumors commonly associated with treatment failure, high glucose use and hypoxia, to design a unique therapy based on the selective accumulation of two cytotoxic compounds, 2-deoxyglucose (2-DG) and copper(II)diacetyl-bis(N(4)-methylthiosemicarbazone) ((64)Cu-ATSM). (64)Cu-ATSM localizes to hypoxic regions of tumors and has been used for administering a high local dose of radiation therapy after uptake by cells. 2-DG, a glucose analog, selectively accumulates in cancer cells and interferes with energy metabolism, resulting in cancer cell death. 2-DG has been shown to potentiate the cytotoxic effect of ionizing radiation and certain chemotherapeutic agents. We have tested the effect of 2-DG on tumor response when combined with (64)Cu-ATSM in a mouse breast tumor model using the highly aggressive mouse mammary carcinoma cell line EMT-6. 2-DG administered up to 2 mg/g of body weight daily resulted in no weight loss or systemic symptoms. EMT-6 mammary tumors had similar uptake of [(18)F]fluoro-2-deoxyglucose before and after 2 weeks of 2-DG treatment as determined by microPET imaging, indicating that resistance to 2-DG uptake does not develop. Pretreatment of tumor-bearing mice with 2-DG resulted in increased uptake of (64)Cu-ATSM by tumors compared with nontreated mice. This effect was not observed with the nonhypoxia-specific agent copper(II)pyruvaldehyde-bis(N(4)-methylthiosemicarbazone. When 2-DG was combined with a single dose of (64)Cu-ATSM (2 mCi), tumor growth was inhibited approximately 60% compared with untreated mice, and animals survived approximately 50% longer than untreated mice or animals treated with each agent alone (32 versus 20 days). The maximum effect on tumor growth and survival was observed when 2-DG was administered daily for the lifetime of the mouse. Our results indicate that 2-DG potentiates the effect of (64)Cu-ATSM on tumoricidal activity and animal survival. We hypothesize that 2-DG alters the metabolic state of the cell, leading to increased uptake of (64)Cu-ATSM by the tumor. This would result in a higher local dose of radiotherapy. The continued presence of 2-DG would then prevent the repair of damaged cells, leading to inhibition of tumor growth. Our data indicate that the strategy of combining tumor-specific cytotoxic agents that function by differing mechanisms can result in an effective, selective, tumor-specific cell death with minimal effect on the host.
Download full-text PDF |
Source |
---|
J Anim Sci
January 2025
Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA.
With the growing bourbon industry in the southeastern U.S. leading to increased production of liquid distillery byproducts, there is a pressing need to explore sustainable uses for whole stillage [containing residual grain (corn, rye, malted barley) and liquid after ethanol separation] in livestock nutrition.
View Article and Find Full Text PDFHealth Phys
January 2025
Nuclear Medicine and Molecular Imaging Sciences Program, Department of Clinical & Diagnostic Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL
Ionizing radiation on the skin has the potential to cause various sequelae affecting quality of life and even leading to death due to multi-system failure. The development of radiation dermatitis is attributed to oxidative damage to the skin's basal layer and alterations in immune response, leading to inflammation. Past studies have shown that [18F]F-2-fluoro-2-deoxyglucose positron emission tomography-computed tomography ([18F]F-FDG PET/CT) can be used effectively for the detection of inflammatory activity, especially in conditions like hidradenitis suppurativa, psoriasis, and early atherosclerosis.
View Article and Find Full Text PDFLife Sci Alliance
March 2025
https://ror.org/00hj54h04 Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA
Breast cancer stem cells (CSCs) are difficult to therapeutically target, but continued efforts are critical given their contribution to tumor heterogeneity and treatment resistance in triple-negative breast cancer. CSC properties are influenced by metabolic stress, but specific mechanisms are lacking for effective drug intervention. Our previous work on TFEB suggested a key function in CSC metabolism.
View Article and Find Full Text PDFCurr Cardiol Rep
January 2025
Department of Medical Imaging, Montreal Heart Institute, Montréal, Québec, Canada.
Purpose Of Review: This review aims to explore the clinical significance of atrial fluorodeoxyglucose (FDG) uptake observed in positron emission tomography (PET) scans, focusing on its association with atrial fibrillation (AF), cardiac sarcoidosis, and myocarditis. We discuss the implications of atrial uptake for patient management and prognosis.
Recent Findings: Recent studies have demonstrated that atrial FDG uptake is frequently present in patients with AF, particularly those with persistent AF, and is linked to increased risks of stroke and poorer outcomes after ablation.
J Neurol
January 2025
Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
Background: Anti-IgLON5 disease is a rare autoimmune neurological disorder with prominent Tau protein deposits in the brainstem and hypothalamus. The aim of this study was to visualize the in vivo distribution patterns of Tau protein in patients with anti-IgLON5 disease using the second-generation Tau PET tracer, Florzolotau (18F) PET imaging.
Methods: Patients diagnosed with anti-IgLON5 disease were enrolled consecutively.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!