Unlabelled: The precise mechanism of isoflurane and mitochondrial adenosine triphosphate-sensitive potassium channel (mitoK(ATP)) interaction is still unclear, although the mitoK(ATP) is involved in isoflurane-induced preconditioning. We examined the role of various intracellular signaling systems in mitoK(ATP) activation with isoflurane. Mitochondrial flavoprotein fluorescence (MFF) was measured to quantify mitoK(ATP) activity in guinea pig cardiomyocytes. To confirm isoflurane-induced MFF, cells were exposed to Tyrode's solution containing either isoflurane (1.0 +/- 0.1 mM) or diazoxide and then both drugs together (n = 10 each). In other studies, the following drugs were each added during isoflurane administration: adenosine or the adenosine receptor antagonist 8-(p-sulfophenyl)-theophylline (SPT); the protein kinase C (PKC) activators phorbol-12-myristate-13-acetate (PMA) and phorbol-12,13-dibutyrate (PDBu); the PKC inhibitors polymyxin B and staurosporine; the tyrosine kinase inhibitor lavendustin A; or the mitogen-activated protein kinase inhibitor SB203580 (n = 10 each). Isoflurane potentiated MFF induced by diazoxide (100 micro M), and diazoxide also increased isoflurane-induced MFF. PMA (0.2 micro M), PDBu (1 micro M), and adenosine (100 micro M) induced MFF. However, SPT (100 micro M), polymyxin B (50 micro M), staurosporine (200 nM), lavendustin A (0.5 micro M), and SB203580 (10 micro M) all failed to inhibit the effect of isoflurane. Our results show that isoflurane, adenosine, and PKC activate mitoK(ATP). However, our data do not support an action of isoflurane through pathways involving adenosine, PKC, tyrosine kinase, or mitogen-activated protein kinase. These results suggest that isoflurane may directly activate mitoK(ATP).

Implications: Our results show that isoflurane activates mitochondrial adenosine triphosphate-sensitive potassium (mitoK(ATP)) channels, but not through pathways involving adenosine, protein kinase C, tyrosine kinase, or p38 mitogen-activated protein kinase. Isoflurane may directly activate mitoK(ATP) channels.

Download full-text PDF

Source
http://dx.doi.org/10.1213/01.ANE.0000077072.67502.CCDOI Listing

Publication Analysis

Top Keywords

protein kinase
20
mitochondrial adenosine
12
adenosine triphosphate-sensitive
12
triphosphate-sensitive potassium
12
isoflurane
12
tyrosine kinase
12
mitogen-activated protein
12
100 micro
12
adenosine
9
potassium channel
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!