Objective: Scopolamine, a muscarinic receptor antagonist, can produce temporary cognitive impairments as well as electroencephalographic changes that partially resemble those observed in Alzheimer's disease. In order to test the sensitivity of spectral power and hemispheric coherence to changes in cholinergic transmission, we evaluated quantitative magnetoencephalogram (MEG) after intravenous injection of scopolamine.
Methods: MEG of 8 elderly healthy subjects (59-80 years) were measured with a whole-head magnetometer after intravenous injection of scopolamine. An injection of glycopyrrolate, a peripheral muscarinic antagonist, was used as the placebo in a double-blind, randomized, cross-over design. Spectral power and coherence were computed over 7 brain regions in 3 frequency bands.
Results: Scopolamine administration increased theta activity (4-8 Hz) and resulted in the abnormal pattern of MEG desynchronization in eyes-open vs. eyes-closed conditions in the alpha band (8-13 Hz). These effects were most prominent over the posterior regions. Interhemispheric and left intrahemispheric coherence was significantly decreased in the theta band (4-8 Hz).
Conclusions: Spontaneous cortical activity at the theta and alpha range and functional coupling in the theta band are modulated by the cholinergic system. MEG may provide a tool for monitoring brain dynamics in neurological disorders associated with cholinergic abnormalities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1388-2457(03)00165-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!