p53 is one of the key molecules regulating cell proliferation, apoptosis and tumor suppression by integrating a wide variety of signals. The structural basis for this function is still poorly understood. p53 appears to exercise its function as a modular protein in which different functions are associated with distinct domains. Presumably, p53 contains both folded and partially structured parts. Here, we have investigated the structure of the isolated N-terminal part of p53 (amino acid residues 1-93) using biophysical techniques. We demonstrate that this domain is devoid of tertiary structure and largely missing secondary structure elements. It exhibits a large hydrodynamic radius, typical for unfolded proteins. These findings suggest strongly that the entire N-terminal part of p53 is natively unfolded under physiological conditions. Furthermore, the binding affinity to its functional antagonist Mdm2 was investigated. A comparison of the binding of human Mdm2 to the N-terminal part of p53 and full-length p53 suggests that unfolded and folded parts of p53 function synergistically.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2003.08.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!