This study focuses on the potential protective effects of intracerebral adeno-viral mediated glial cell line derived neurotrophic factor (GDNF) gene transfer in a rat model of Parkinson's disease (PD). Thirty-five SD rats were divided into three groups to receive perinigral injections of recombinant adenovirus encoding GDNF (Ad-GDNF), LacZ (Ad-LacZ) or PBS, respectively. One week later, an intrastriatal injection of 6-hydroxydopamine (6-OHDA) was administered to induce the progressive degeneration of dopaminergic neurons. Immunohistochemistry showed that GDNF treatment prior to neuronal damage could promote survival and morphological recovery of tyrosine hydroxylase (TH)-positive neurons in the midbrain. Approximately 70% of nigral TH-positive cells survived in the Ad-GDNF group, compared to approximately 30% for the Ad-LacZ or PBS control group. Histochemical analysis of monoamine levels in the striatum demonstrated that the dopamine content was higher for the Ad-GDNF group than the control groups. Similarly, Ad-GDNF treated animals showed improved apomorphine-induced rotational behavior. The exogenous GDNF gene was efficiently expressed in the brain as detected by ELISA. This work demonstrates that intracerebral adeno-viral mediated GDNF gene transfer can protect dopaminergic neurons in vivo from 6-OHDA-induced injuries. The approach used in this study could potentially be used therapeutically in patients with PD and further work is required to explore this idea in depth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1353-8020(03)00097-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!