Information on how suppressor/regulatory T cells can be generated directly in vivo and prevent autoimmunity remains fragmentary. We show here that epicutaneous immunization (ECi) with the immunodominant peptide of myelin basic protein (MBP), Ac1-11, protects mice that are transgenic for an Ac1-11-specific T cell receptor against both the induced and spontaneous forms of experimental allergic encephalomyelitis (EAE). This protection was antigen specific and antigen dose dependent, and was mediated by CD4(+)/CD25(-) T cells whose suppressive activity required cell-cell contact and could transfer protection to naive recipients. These ECi-induced suppressor T cells controlled naive MBP-specific CD4 T cells by inhibiting both their activation and their capacity to secrete IFN-gamma. There was no CD4 T cell infiltration in the brain of protected mice. Finally, ECi with autoantigenic peptides protected two nontransgenic models from relapsing-remitting EAE in an antigen-specific and antigen dose-dependent manner.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1074-7613(03)00239-5DOI Listing

Publication Analysis

Top Keywords

epicutaneous immunization
8
autoantigenic peptides
8
suppressor cells
8
experimental allergic
8
allergic encephalomyelitis
8
cells
5
immunization autoantigenic
4
peptides induces
4
induces suppressor
4
cells prevent
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!