In vivo passage of non-pathogenic, CCR5-tropic simian/human immunodeficiency virus (SHIV) - SHIVsf162 resulted in a pathogenic isolate, SHIVsf162p3. In an attempt to characterize envelope (Env)-mediated properties that may contribute to its pathogenicity, major (P3 major) and minor (P3 minor) Env gp120 variants were cloned from the plasma of a SHIVsf162p3-infected animal, and expressed in the context of luciferase reporter viruses. Entry mediated by these envelopes and susceptibility to neutralization by CD4 induced-site (CD4i) antibodies (MAbs) was analyzed in comparison to parental SF162. Sequence analysis revealed that the P3 major and minor variant Envs contained 14 and 17 amino acid changes, respectively, compared with SF162. The rank order of entry mediated by the three envelopes was P3 major > SF162 > P3 minor, whereas the reverse order was observed for susceptibility to neutralization by CD4i MAbs. Since CD4i epitopes overlap the coreceptor (CoR) binding site, these findings suggest that the amino acid changes accumulated upon in vivo passage of SHIVsf162 result in Env gp120 structural rearrangements that modulate the exposure and/or conformation of the CoR binding site. This, in turn, led to increased entry and infectivity of the P3 major variant and may be responsible, in part, for the enhanced pathogenicity of SHIVsf162p3.

Download full-text PDF

Source
http://dx.doi.org/10.1034/j.1600-0684.2003.00027.xDOI Listing

Publication Analysis

Top Keywords

gp120 variants
8
vivo passage
8
major minor
8
env gp120
8
entry mediated
8
susceptibility neutralization
8
amino acid
8
acid changes
8
cor binding
8
binding site
8

Similar Publications

Microvirin is a lectin molecule known to have monovalent interaction with glycoprotein gp120. A previously reported high-resolution structural analysis defines the mannobiose-binding cavity of Microvirin. Nonetheless, structure does not directly define the energetics of binding contributions of protein contact residues.

View Article and Find Full Text PDF

Combinatorial antiretroviral therapy (cART) has transformed HIV infection from a death sentence to a controllable chronic disease, but cannot eliminate the virus. Latent HIV-1 reservoirs are the major obstacles to cure HIV-1 infection. Previously, we engineered exosomal Tat (Exo-Tat) to reactivate latent HIV-1 from the reservoir of resting CD4+ T cells.

View Article and Find Full Text PDF

The pretriggered conformation of the human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer ((gp120/gp41)) is targeted by virus entry inhibitors and broadly neutralizing antibodies (bNAbs). The lability of pretriggered Env has hindered its characterization. Here, we produce membrane Env variants progressively stabilized in pretriggered conformations, in some cases to a degree beyond that found in natural HIV-1 strains.

View Article and Find Full Text PDF

Unlabelled: The envelope glycoprotein (Env) trimer on the surface of human immunodeficiency virus type I (HIV-1) mediates viral entry into host CD4 T cells and is the sole target of neutralizing antibodies. Broadly neutralizing antibodies (bnAbs) that target gp120 V3-glycan of HIV-1 Env trimer are potent and block the entry of diverse HIV-1 strains. Most V3-glycan bnAbs interact, to a different extent, with a glycan attached to N332, but Asn at this position is not absolutely conserved or required for HIV-1 entry based on the prevalence of N332 in different circulating HIV-1 strains from diverse clades.

View Article and Find Full Text PDF

Unlabelled: Human immunodeficiency virus type 1 typically requires a high density of CD4 for efficient entry as a mechanism to target CD4+ T cells (T-tropic), with CCR5 being used most often as the coreceptor. When target T cells are limiting, the virus can evolve to infect cells with a low density of CD4 such as macrophages (M-tropic). The entry phenotype is known to be encoded in the viral Env protein on the surface of the virus particle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!