Download full-text PDF

Source

Publication Analysis

Top Keywords

[spectral photometric
4
photometric remission
4
remission measurements
4
measurements human
4
human skin
4
skin area
4
area 220
4
220 2500
4
2500 nm]
4
[spectral
1

Similar Publications

Developing Topics.

Alzheimers Dement

December 2024

Neurosciences and Signalling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.

Background: Aβ peptide is a central player in Alzheimer's disease (AD) pathogenesis, which once generated rapidly tends to aggregate, from oligomers to fibrils and finally deposits into senile plaques, one of the disease hallmarks. Extracellular vesicles (EVs) are secreted by all cell types and recognized as key intercellular communication mediators. In AD, it has been reported that EVs can carry Aβ and may potentially accelerate its aggregation, thus contributing to the seeding of the toxic peptide.

View Article and Find Full Text PDF

Spectroscopic properties of Tb-doped and Tb-Ag codoped lithium tetraborate (LTB) glasses with LiBO (or LiO-2BO) composition are investigated and analysed using electron paramagnetic resonance (EPR), optical absorption, photoluminescence (PL) and photoluminescence excitation (PLE) spectra, PL decay kinetics and absolute quantum yield (QY) measurements. PL spectra of the investigated glasses show numerous narrow emission bands corresponding to the D → F (J = 6-0) and D → F (J = 5-3) transitions of Tb (4f) ions. The most intense PL band of Tb ions at 541 nm (D → F transition) is characterised by a lifetime slightly exceeding 2.

View Article and Find Full Text PDF

Early Mortality Prediction in Intensive Care Unit Patients Based on Serum Metabolomic Fingerprint.

Int J Mol Sci

December 2024

ISEL-Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro 1, 1959-007 Lisbon, Portugal.

Predicting mortality in intensive care units (ICUs) is essential for timely interventions and efficient resource use, especially during pandemics like COVID-19, where high mortality persisted even after the state of emergency ended. Current mortality prediction methods remain limited, especially for critically ill ICU patients, due to their dynamic metabolic changes and heterogeneous pathophysiological processes. This study evaluated how the serum metabolomic fingerprint, acquired through Fourier-Transform Infrared (FTIR) spectroscopy, could support mortality prediction models in COVID-19 ICU patients.

View Article and Find Full Text PDF

Pitfalls of Using ANS Dye Under Molecular Crowding Conditions.

Int J Mol Sci

December 2024

Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 St. Petersburg, Russia.

The 1-anilino-8-naphthalenesulfonate (ANS) fluorescent dye is widely used in protein folding studies due to the significant increase in its fluorescence quantum yield upon binding to protein hydrophobic regions that become accessible during protein unfolding. However, when modeling cellular macromolecular crowding conditions in protein folding experiments in vitro using crowding agents with guanidine hydrochloride (GdnHCl) as the denaturant, the observed changes in ANS spectral characteristics require careful consideration. This study demonstrates that crowding agents can form clusters that interact differently with ANS.

View Article and Find Full Text PDF

The neurotransmitter acetylcholine (ACh) is essential in both the central and peripheral nervous systems. Recent studies highlight the significance of interactions between ACh and various neuromodulators in regulating complex behaviors. The ability to simultaneously image ACh and other neuromodulators can provide valuable information regarding the mechanisms underlying these behaviors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!