Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1164/arrd.1961.84.6.876 | DOI Listing |
Pulmonology
December 2025
Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK.
Age-related lung function decline is associated with small airway closure and gas trapping. The mechanisms which cause these changes are not fully understood. It has been suggested that COPD is caused by accelerated ageing.
View Article and Find Full Text PDFAnesthesiology
January 2025
Department of Critical Care, Melbourne Medicine School, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria, Australia.
Background: Multi-compartment computer models of heterogeneity in alveolar ventilation-perfusion ratios (VA/Q scatter) across the lung explain the significant alveolar-arterial (A-a) partial pressure gradients and associated alveolar dead-space fractions (VDA/VA) seen in anesthetized patients for both carbon dioxide and for anesthetic gases of different blood solubilities. However, the accuracy of a simpler two-compartment model of VA/Q scatter to do this has not been tested or compared to calculations from the traditional Riley model with "ideal", unventilated (shunt) and unperfused (deadspace) compartments.
Methods: Measurements of gas partial pressures in inspired and expired gas and arterial and mixed venous blood from 29 patients undergoing inhalational general anesthesia for cardiac surgery was used to compare the accuracy of two simple models of VA/Q scatter and lung gas exchange in predicting measured alveolar and arterial partial pressure differences, and associated alveolar dead-space calculations for the modern anesthetic gases isoflurane, sevoflurane and desflurane.
mSphere
January 2025
Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
Coronaviruses (CoV) emerge suddenly from animal reservoirs to cause novel diseases in new hosts. Discovered in 2012, the Middle East respiratory syndrome coronavirus (MERS-CoV) is endemic in camels in the Middle East and is continually causing local outbreaks and epidemics. While all three newly emerging human CoVs from the past 20 years (SARS-CoV, SARS-CoV-2, and MERS-CoV) cause respiratory disease, each CoV has unique host interactions that drive differential pathogeneses.
View Article and Find Full Text PDFFront Immunol
January 2025
Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France.
Rationale: COVID-19-associated acute-respiratory distress syndrome (C-ARDS) results from a direct viral injury associated with host excessive innate immune response mainly affecting the lungs. However, cytokine profile in the lung compartment of C-ARDS patients has not been widely studied, nor compared to non-COVID related ARDS (NC-ARDS).
Objectives: To evaluate caspase-1 activation, IL-1 signature, and other inflammatory cytokine pathways associated with tissue damage using post-mortem lung tissues, bronchoalveolar lavage fluids (BALF), and serum across the spectrum of COVID-19 severity.
Br J Anaesth
February 2025
CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Intensive Care Unit, Hospital Universitario La Princesa, Madrid, Spain.
Despite the maturity and sophistication of anaesthesia workstations, improvements in our understanding of intraoperative mechanical ventilation, and use of less invasive surgical techniques, postoperative pulmonary complications (PPCs) are still a common problem in surgical patients of all ages. PPCs are associated with a higher incidence of perioperative morbidity and mortality, longer hospital stays, and higher healthcare costs. PPCs are strongly associated with anaesthesia-induced atelectasis, which predisposes to lung damage when partially collapsed lungs are subjected to mechanical ventilation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!