Download full-text PDF

Source
http://dx.doi.org/10.1016/S0022-5347(17)64734-7DOI Listing

Publication Analysis

Top Keywords

abnormal hydrodynamics
4
hydrodynamics bladder
4
bladder ureters
4
ureters ureteral
4
ureteral reflux
4
abnormal
1
bladder
1
ureters
1
ureteral
1
reflux
1

Similar Publications

MAF1 inhibits hepatocarcinogenesis by fostering an immunostimulatory tumor microenvironment.

J Immunother Cancer

January 2025

State Key Laboratory of Oncology in South China, and Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China

Background: The biological significance of MAF1, a tumor suppressor, in carcinogenesis and immune response of hepatocellular carcinoma (HCC) remains unreported. Understanding the underlying mechanisms by which MAF1 enhances anti-tumor immunity in HCC is crucial for developing novel immunotherapy strategies and enhancing clinical responses to treatment for patients with HCC.

Methods: Mice were subjected to hydrodynamic tail vein injections of transposon vectors to overexpress AKT/NRas, or c-Myc, with or without wild-type (WT) or mutant-activated (-4A) MAF1, or short-hairpin MAF1 (shMAF1).

View Article and Find Full Text PDF

Size-dependent Nanoparticle Accumulation In Venous Malformations.

J Vasc Anom (Phila)

December 2024

Laboratory for Biomaterials and Drug Delivery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.

Objective: The current treatment of venous malformations (VMs) consists of medications with systemic toxicity and procedural interventions with high technical difficulty and risk of hemorrhage. Using nanoparticles (NPs) to enhance drug delivery to VMs could enhance efficacy and decrease systemic toxicity. NPs can accumulate in tissues with abnormal vasculature, a concept known as the enhanced permeation and retention (EPR) effect.

View Article and Find Full Text PDF

Objective: Genotoxicity assays include micronucleus test, comet assay, and malformed sperm head used to investigate the protective potential of quercetin (Que) and Que nanoparticles against imidacloprid (IMI)-induced genotoxicity in Swiss albino mice.

Methods: The ionic gelation procedure was used to synthesize the Que nanoparticles and characterized for their hydrodynamic diameter, zeta potential, scanning electron microscopy (SEM), transmission electron microscopy (TEM), FT-IR, and encapsulation efficiency. A total of 48 mice were taken in eight groups with six animals in each group.

View Article and Find Full Text PDF

Intracardiac fluid dynamic analysis: available techniques and novel clinical applications.

BMC Cardiovasc Disord

December 2024

Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa, 1, 88100, Catanzaro, Italy.

There is a growing interest in the potential use of intracardiac fluid dynamic analysis to better understand cardiac mechanics and identify novel imaging biomarkers of cardiovascular disease. Abnormalities of vortex formation and shape may in fact play a critical role in cardiac function, affecting both efficiency and myocardial workload. Recent advances in imaging technologies have significantly improved our ability to analyze these dynamic flow patterns in vivo, offering new insights into both normal and pathological cardiac conditions.

View Article and Find Full Text PDF

Blood flow dynamics in the ascending aorta of patients with bicuspid aortic valve before and after transcatheter aortic valve replacement: a computational fluid dynamics study.

BMC Cardiovasc Disord

December 2024

Department of Structural Heart Disease, National Center for Cardiovascular Disease, China & Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.

Background: Abnormal blood flow patterns are known to contribute to the ascending aortic dilation in patients with bicuspid aortic valve (BAV). The present study elucidated the blood flow characteristics in the dilated ascending aorta before and after transcatheter aortic valve replacement (TAVR) using computational fluid dynamics (CFD) analysis.

Methods: We performed CFD analysis in three BAV patients with ascending aortic dilation (maximum diameter ≥ 45 mm) who underwent TAVR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!