A soluble macrophage-derived blastogenic factor, previously reported as MBF, is secreted from macrophages activated with galactose oxidase. It was previously shown that MBF is able to induce IFN-gamma production and proliferation of T lymphocytes. In this study we found that MBF is able to induce in human peripheral blood mononuclear cells (PBMC) production of interleukin 1 (IL-1) beta, interleukin 2 (IL-2) and tumor necrosis factor (TNF) alpha and generation of MHC-unrestricted cytotoxic activity. The induction of killer cells is likely to rely on IFN-gamma production in that in PBMC treated with a monoclonal antibody (Mab) against IFN-gamma, the MBF induced cytotoxic activity was drastically reduced. A comparison of MBF induced cytotoxic effectors with those induced by IL-2 showed that both cytotoxic effectors pertain to NK lineage, in that they were CD3- and CD16+. On the contrary, the precursors of MBF and IL-2 induced killer cells were different; MBF cytotoxic precursor cells were highly sensitive to L-Leucine methyl ester (Leu-OME), a drug able to eliminate monocytes and NK cells, whereas IL-2 cytotoxic precursors were unaffected by this drug.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cytotoxic effectors
12
blastogenic factor
8
human peripheral
8
peripheral blood
8
blood mononuclear
8
mononuclear cells
8
mbf induce
8
ifn-gamma production
8
cytotoxic activity
8
killer cells
8

Similar Publications

Background: Pancreatic ductal adenocarcinoma (PDAC) is mostly refractory to immunotherapy due to immunosuppression in the tumor microenvironment and cancer cell-intrinsic T cell tolerance mechanisms. PDAC is described as a "cold" tumor type with poor infiltration by T cells and factors leading to intratumoral T cell suppression have thus received less attention. Here, we identify a cancer cell-intrinsic mechanism that contributes to a T cell-resistant phenotype and describes potential combinatorial therapy.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) hold promise to advance targeted therapy of pancreatic ductal adenocarcinoma (PDAC), where the desmoplastic tumor stroma challenges effective treatment. Here, we explored the urokinase plasminogen activator receptor (uPAR) as a candidate ADC target in PDAC, harnessing its massive tumoral and stromal expression in this stroma-dense tumor. We generated a site-specific ADC offering high-affinity, cross-species reactivity, and efficient internalization of the anti-uPAR monoclonal antibody, FL1, carrying a potent anthracycline derivative (PNU-158692).

View Article and Find Full Text PDF

Natural killer T cells (NKTs) are a promising platform for cancer immunotherapy, but few genes involved in regulation of NKT therapeutic activity have been identified. To find regulators of NKT functional fitness, we developed a CRISPR/Cas9-based mutagenesis screen that employs a guide RNA (gRNA) library targeting 1,118 immune-related genes. Unmodified NKTs and NKTs expressing a GD2-specific chimeric antigen receptor (GD2.

View Article and Find Full Text PDF

The field of antibody therapeutics is rapidly growing, with over 210 antibodies currently approved or in regulatory review and ~ 1,250 antibodies in clinical development. Antibodies are highly versatile molecules that, with strategic design of their antigen-binding domain (Fab) and the domain responsible for mediating effector functions (Fc), can be used in a wide range of therapeutic indications. Building on many years of progress, the biopharmaceutical industry is now advancing innovative research and development by exploring new targets and new formats and using antibody engineering to fine-tune functions tailored to specific disease requirements.

View Article and Find Full Text PDF

PD1-TLR10 fusion protein enhances the antitumor efficacy of CAR-T cells in colon cancer.

Int Immunopharmacol

January 2025

TriArm Therapeutics, Niudun Road 200, 201203 Shanghai, China. Electronic address:

Background: The immunosuppressive microenvironment negatively affects the efficacy of chimeric antigen receptor T (CAR-T) cells in solid tumors. Fusion protein that combining extracellular domain of inhibitory checkpoint protein and the cytoplasmic domain of stimulatory molecule may improve the efficacy of CAR-T cells by reversing the suppressive signals.

Methods: To generate optimal PD1-TLR10 fusion proteins, PD1 extracellular domain and TLR10 intracellular domain were connected by transmembrane domain from PD1, CD28, or TLR10, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!