Download full-text PDF

Source

Publication Analysis

Top Keywords

pyruvic glutamic
4
glutamic oxalacetic
4
oxalacetic transaminases
4
transaminases serum
4
serum rabbits
4
rabbits subjected
4
subjected explosive
4
explosive decompression
4
decompression relation
4
relation anatomical
4

Similar Publications

Deciphering the impact of NOS-derived NO on nitrogen metabolism and carbon flux in the heterocytous cyanobacterium Aphanizomenon flos-aquae 2012/KM1/D3.

Plant Physiol Biochem

January 2025

Laboratory of Microbial Genetics, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India. Electronic address:

Nitric oxide synthases (NOSs) are heme-based monooxygenases that catalyze the NADPH-dependent oxidation of L-arginine to produce NO and L-citrulline. Over the past five years, the identification and characterization of NOS homologs in cyanobacteria have significantly advanced our understanding of these enzymes. However, the precise mechanisms through which NOS-derived NO influences nitrogen metabolism remain incompletely elucidated.

View Article and Find Full Text PDF

The dysfunction of mitochondria, the primary source of cellular energy and producer of reactive oxygen species (ROS), is associated with brain aging and neurodegenerative diseases. Scientific evidence indicates that light in the visible and near-infrared spectrum can modulate mitochondrial activity, a phenomenon known in medicine as photobiomodulation therapy (PBM-t). The beneficial effects of PBM-t on dementia and neurodegeneration have been reviewed in the literature.

View Article and Find Full Text PDF

Dihydroporphyrin iron (DH-Fe) is a novel plant growth regulator that plays significant roles in plant stress resistance. We found that is extremely sensitive to low temperature (LT) with a threshold of 25°C. To evaluate whether and how DH-Fe alleviates LT stress in , different DH-Fe concentrations (0, 10, 20, and 40 μg·L) were applied to estimate its effects on C and N metabolism and antioxidative capacity in grown under 20°C.

View Article and Find Full Text PDF

Metabolomic in severe traumatic brain injury: exploring primary, secondary injuries, diagnosis, and severity.

Crit Care

January 2025

Department of Critical Care Medicine, Cumming School of Medicine, Health Research Innovation Center (HRIC), University of Calgary, Room 4C64, 3280 Hospital Drive N.W., Calgary, AB, T2N 4Z6, Canada.

Background: Traumatic brain injury (TBI) is a major public health concern worldwide, contributing to high rates of injury-related death and disability. Severe traumatic brain injury (sTBI), although it accounts for only 10% of all TBI cases, results in a mortality rate of 30-40% and a significant burden of disability in those that survive. This study explored the potential of metabolomics in the diagnosis of sTBI and explored the potential of metabolomics to examine probable primary and secondary brain injury in sTBI.

View Article and Find Full Text PDF

The present work examines the extreme impact of lead acetate and the preventive function of co-supplementation with vitamin C and glutathione. It hypothesizes that these supplements can alleviate the poisonous effects of lead exposure. Eighty male albino rats, weighing 100 ± 15 g, were categorized into four groups: the control group, the second group receiving daily supplements of 100 mg/kg of body weight glutathione and 1 mg/100 g of body weight vitamin C orally, the third group receiving 100 mg/kg body weight of lead acetate orally daily, and the fourth group receiving similar oral dosages of lead acetate along with glutathione and vitamin C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!