A series of novel hGRF(1-29)-NH2 analogs were synthesized and biotinylated. The immunological and biological activities of these analogs were then characterized. To distance the biotin moiety from the putative bioactive core, a C-terminal spacer arm consisting of -Gly-Gly-Cys-NH2 (-GGC) was added to hGRF(1-29)-NH2 (hGRF29) and analogs, with subsequent biotinylation performed at the cysteine residue. Neither addition of the C-terminal spacer arm nor biotinylation affected affinity of these analogs for GRF antibody. Relative to hGRF(1-44)-NH2 (hGRF44: potency = 1.0), the biotinylated analogs were equipotent in vitro to their nonbiotinylated, parent compounds: [desNH2Tyr1,D-Ala2,Ala15]hGRF29-GGC-(tpBiocyt in)-NH2 (4.7) = [Ala15]hGRF29-GGC-(tpBiocytin)-NH2 (3.9) greater than hGRF29-GGC-(tpBiocytin)-NH2 (0.8). Based upon cumulative GH release data in vivo (0-60 min postinjection), [desNH2Tyr1,D-Ala2,Ala15]hGRF29-GGC-(tpBiocyt in)-NH2, [Ala15]hGRF29-GGC-(tpBiocytin)-NH2, and hGRF29-GGC-(tpBiocytin)-NH2 displayed 8.6, 5.5, and 0.8 times, respectively, the potency of hGRF44. These in vivo potency values were not significantly different from the corresponding parent compounds (i.e., with or without the C-terminal spacer arm). In summary, biotinylated hGRF analogs have been developed that retain full immunoreactivity and potent bioactivity (in vitro and in vivo), thus permitting their use in GRF receptor isolation, ELISA, and histochemical procedures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0196-9781(92)90188-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!