The product of the c-raf-1 proto-oncogene is a cytoplasmic serine/threonine protein kinase that appears to be activated in signal transduction from a variety of cell-surface receptors. The mechanism of c-Raf activation upon stimulation of cell-surface receptors is not clear, but there seem to exist multiple pathways of activation which involve tyrosine and/or serine phosphorylation of the c-Raf protein in vivo. The activated state of Raf is reflected in an increased apparent molecular weight of the Raf protein in sodium dodecyl sulfate-polyacrylamide gels owing to hyperphosphorylation. The tumor promoter 12-O-tetradecanoyl phorbol 13-acetate (TPA) is one of the agents able to induce this hyperphosphorylation of Raf in vivo, suggesting that protein kinase C (PKC) may be involved in the activation of c-Raf in particular situations. Using recombinant baculoviruses expressing PKC and Raf polypeptides, we show here that conventional PKC types (alpha, beta, gamma) but not novel types (delta, zeta, eta) or the unrelated Mos kinase are able to activate c-Raf in a TPA-dependent manner upon coexpression in insect cells. Direct phosphorylation of the Raf protein with PKC in vitro also enhanced the kinase activity of c-Raf, suggesting that c-Raf acts immediately downstream of PKC in a protein kinase cascade which is triggered by TPA and may lead to transcriptional activation of TPA-inducible genes and tumor promotion.
Download full-text PDF |
Source |
---|
J Med Chem
January 2025
Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
The Ca/calmodulin-dependent protein kinase II α (CaMKIIα) plays a crucial role in regulating neuronal signaling and higher brain functions, being involved in various brain diseases. Utilization of small molecules targeting the CaMKIIα hub domain has proved to be a promising strategy for specific CaMKIIα modulation and future therapy. Through an structure-based virtual screening campaign, we herein identified 2-arylthiazole-4-carboxylic acids as a new class of high-affinity CaMKIIα hub ligands.
View Article and Find Full Text PDFSci Signal
January 2025
Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
The small GTPase R-RAS2 regulates homeostatic proliferation and survival of T and B lymphocytes and, when present in high amounts, drives the development of B cell chronic lymphocytic leukemia. In normal and leukemic lymphocytes, R-RAS2 constitutively binds to antigen receptors through their immunoreceptor tyrosine-based activation motifs (ITAMs) and promotes tonic activation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway. Here, we examined the molecular mechanisms underlying this direct interaction and its consequences for R-RAS2 activity.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom.
Mutations in Leucine-rich repeat kinase 2 (LRRK2) and PTEN-induced kinase 1 (PINK1) are associated with familial Parkinson's disease (PD). LRRK2 phosphorylates Rab guanosine triphosphatase (GTPases) within the Switch II domain while PINK1 directly phosphorylates Parkin and ubiquitin (Ub) and indirectly induces phosphorylation of a subset of Rab GTPases. Herein we have crossed LRRK2 [R1441C] mutant knock-in mice with PINK1 knock-out (KO) mice and report that loss of PINK1 does not impact endogenous LRRK2-mediated Rab phosphorylation nor do we see significant effect of mutant LRRK2 on PINK1-mediated Rab and Ub phosphorylation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801.
Enzyme-enzyme interactions are fundamental to the function of cells. Their atomistic mechanisms remain elusive mainly due to limitations of in-cell measurements. We address this challenge by atomistically modeling, for a total of ≈80 μs, a slice of the human cell cytoplasm that includes three successive enzymes along the glycolytic pathway: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase (PGK), and phosphoglycerate mutase (PGM).
View Article and Find Full Text PDFPLoS Biol
January 2025
Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina.
The DAF-2/insulin/insulin-like growth factor signaling (IIS) pathway plays an evolutionarily conserved role in regulating reproductive development, life span, and stress resistance. In Caenorhabditis elegans, DAF-2/IIS signaling is modulated by an extensive array of insulin-like peptides (ILPs) with diverse spatial and temporal expression patterns. However, the release dynamics and specific functions of these ILPs in adapting to different environmental conditions remain poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!