The effect of electrical stimulation of the centromedian-parafascicular complex on local cerebral blood flow and local cerebral glucose utilization was investigated in anesthetized, paralysed and ventilated rats. Local cerebral blood flow and local cerebral glucose utilization were measured in separate groups of animals using the autoradiographic (14C)iodoantipyrine and (14C)2-deoxyglucose methods, respectively. Because of the well-established centromedian-parafascicular complex neuroanatomical connections, three functional neuronal systems were analysed and compared: the extrapyramidal motor system the limbic system and the reticular formation, also known as the ascending activating system. Cortical regions not included in the limbic system were considered separately. The validity of comparisons between changes in local cerebral blood flow and local cerebral glucose utilization across the brain was verified by assessing the reactivity and stability of the cortical blood flow during long-term centromedian-parafascicular complex stimulation. Centromedian-parafascicular complex stimulation elicited a marked but heterogeneous increase in local cerebral blood flow in 50 of the 52 cerebral structures measured. The most pronounced increases were seen in the lateral habenular nucleus (331 +/- 30% of control), the zona incerta (400 +/- 55%), the mesencephalic reticular formation (415 +/- 122%) and the parietal cortex (211 +/- 35%). In contrast, local cerebral glucose utilization remained statistically unchanged (P greater than 0.05) in 28 of these 50 individual brain regions during centromedian-parafascicular complex stimulation. The most pronounced increases in local cerebral glucose utilization were seen in the zona incerta (123 +/- 28%) and the mesencephalic reticular formation (193 +/- 26%). Local cerebral blood flow and local cerebral glucose utilization were linearly related in unstimulated controls, considering either all brain regions taken as a whole or the three systems separately. The significant increase in the slopes of the regression line between local cerebral blood flow and local cerebral glucose utilization for the reticular formation and the limbic system during centromedian-parafascicular complex stimulation indicates, however, that the coupling mechanisms for these systems, but not for the extrapyramidal motor system, were reset. The local cerebral blood flow to local cerebral glucose utilization ratio was heterogeneous in controls and differentially increased during centromedian-parafascicular complex stimulation, being markedly pronounced in the parietal cortex and in the reticular formation. We conclude that these results, for the first time, provide evidence that, the functionally well-defined neural networks may have different mechanisms whereby changes in vascular and metabolic demands are regulated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0306-4522(92)90110-nDOI Listing

Publication Analysis

Top Keywords

local cerebral
60
centromedian-parafascicular complex
32
blood flow
32
cerebral glucose
32
glucose utilization
32
cerebral blood
28
flow local
24
reticular formation
20
complex stimulation
20
cerebral
16

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!