Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1365836 | PMC |
http://dx.doi.org/10.1113/jphysiol.1955.sp005236 | DOI Listing |
Chem Commun (Camb)
January 2025
Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
Electrochemical water splitting is a promising approach to convert renewable energy into hydrogen energy and is beneficial for alleviating environmental pollution and energy crises, and is considered a clean method to achieve dual-carbon goals. Electrocatalysts can effectively reduce the reaction energy barrier and improve reaction efficiency. However, designing electrocatalysts with high activity and stability still faces significant challenges, which are closely related to the structure and electronic configuration of catalysts.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
Excessive utilization of chemical fertilizers degrades the quality of medicinal plants and soil. Bio-organic fertilizers (BOFs) including microbial inoculants and microalgae have garnered considerable attention as potential substitutes for chemical fertilizer to enhance yield. In this study, a field experiment was conducted to investigate the effects of BOF partially substituting chemical fertilizer on the growth and quality of medicinal plant .
View Article and Find Full Text PDFThe oleaginous yeast is recognized for its remarkable lipid accumulation under nitrogen-limited conditions. However, precise control of microbial lipid production in remains challenging due to the complexity of nutrient media. We developed a two-stage fed-batch fermentation process using a well-defined synthetic medium in a 5-L bioreactor.
View Article and Find Full Text PDFACS Sustain Chem Eng
January 2025
Department of Chemical and Biomolecular Engineering, Universidad de Cantabria, Av. Los Castros s/n, 39005 Santander, Spain.
Although membrane technology is widely used in different gas separation applications, membrane manufacturers need to reduce the environmental impact during the membrane fabrication process within the framework of the circular economy by replacing toxic solvents, oil-based polymers, and such by more sustainable alternatives. These include environmentally friendly materials, such as biopolymers, green solvents, and surfactant free porous fillers. This work promotes the use of environmentally sustainable and low toxic alternatives, introducing the novel application of cellulose acetate (CA) as a biopolymer in combination with dimethyl carbonate (DMC) as a greener solvent and different inorganic fillers (Zeolite-A, ETS-10, AM-4 and ZIF-8) prepared without the use of toxic solvents or reactants.
View Article and Find Full Text PDFChem Biomed Imaging
January 2025
Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland.
Three water-soluble Mn(III)-porphyrin complexes with cationic pyridyl side groups bearing COOH- or OH-terminated carbon chains in the meta or para positions have been synthesized as probes for both magnetic resonance imaging (MRI) and photodynamic therapy (PDT). The complexes , , and are highly water-soluble, and their relaxivities range between 10 and 15 mM s, at 20-80 MHz and 298 K, 2-3 times higher than that of commercial Gd(III)-based agents. The complexes containing carboxylate () or alcoholic () side chains in the para position are endowed with higher relaxivities and have also shown efficient photoinduced DNA cleavage and singlet oxygen (O) generation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!