ANALYTICAL RADIOCHEMISTRY IN HEALTH PHYSICS.

Health Phys

Published: September 1965

Download full-text PDF

Source
http://dx.doi.org/10.1097/00004032-196509000-00012DOI Listing

Publication Analysis

Top Keywords

analytical radiochemistry
4
radiochemistry health
4
health physics
4
analytical
1
health
1
physics
1

Similar Publications

Flow electrolytic separation of radionuclides for interference suppression in γ-spectrometry.

Anal Chim Acta

February 2025

Department of Chemistry and Applied Biosciences, Laboratory of Inorganic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich, CH-8093, Switzerland; Laboratory of Radiochemistry, Centre for Nuclear Engineering and Sciences, Paul Scherrer Institute, Forschungsstrasse 111, Villigen PSI, CH-5232, Switzerland. Electronic address:

Background: The direct and accurate measurement of low-level γ-emitters in samples from nuclear facilities is a challenging task due to the presence of high activities of dominant radionuclides. In this case a complex chemical separation is required to remove interfering radionuclides prior to γ-spectrometric analysis. Several radionuclides such as, Ag, Sb, Sn and Te are of relevance for radioanalytical analysis in nuclear facilities.

View Article and Find Full Text PDF

Grape seed extract (GSE), one of the world's bestselling dietary supplements, is prone to frequent adulteration with chemically similar compounds. These frauds can go unnoticed within the supply chain due to the use of unspecific standard analytical methods for quality control. This research aims to develop a near-infrared spectroscopy (NIRS) method for the rapid and non-destructive quantitative evaluation of GSE powder in the presence of multiple additives.

View Article and Find Full Text PDF

Development of a Tandem Mass Spectral Library for the Detection of Triterpenoids in Plant Metabolome Based on Reference Standards.

Plants (Basel)

November 2024

H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.

Plant triterpenoids represent a diverse group of secondary metabolites and are thought to be valuable for therapeutic applications. For drug development, lead optimization, better knowledge of biological pathways, and high-throughput detection of secondary metabolites in plant extracts are crucial. This paper describes a qualitative method for the rapid and accurate identification of various triterpenoids in plant extracts using the LC-HR-ESI-MS/MS tool in combination with the data-dependent acquisition (DD) approach.

View Article and Find Full Text PDF

Spectroscopic Insight on Neodymium Solvation in Lithium Borohydride-Supported Electrolyte.

J Phys Chem B

December 2024

Radiochemistry and Nuclear Measurements, Idaho National Laboratory, Idaho Falls, Idaho 83415, United States.

Borohydride-based electrolytes have recently emerged as promising media for the electrodeposition of electropositive metals, including rare earth (RE) elements. While the presence of supporting alkali metal cations and RE counteranions provides essential electrochemical conductivity for achieving fast metal electrodeposition, interactions between the host ligand and solvated neodymium (Nd) complexes remain unclear. This study provides insights into the coordination structure of a concentrated and directly solvated Nd salt in a lithium borohydride-supported electrolyte.

View Article and Find Full Text PDF

Complexation thermodynamics of uranyl ions with well-known reprocessing ligands like tributyl phosphate (TBP) and dihexyl octanamide (DHOA) was studied in an ionic liquid (IL) versus a molecular solvent. Whereas 1-butyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)imide (Bumim·TfN) was used as an IL due to its favorable viscosity, acetonitrile was the choice of molecular solvent due to its poor coordinating nature. Optical spectroscopy studies revealed that UO ions formed species of the types ML and ML with both TBP and DHOA, in a stepwise manner.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!