Immunocytochemical techniques were used to analyze the distribution of the calcium-binding proteins calbindin and parvalbumin during the pre- and postnatal development of the rat somatosensory cortex. Calbindin occurs in most early differentiated neurons that form the primordial plexiform layer at embryonic day 14. This expression in transient; during the perinatal period, calbindin becomes immunologically undetectable within the structures derived from the primordial plexiform layer, i.e., the prospective layers I and VIb. Immunoreactive neurons are also absent from adult layers I and VIb. Calbindin is also detected in a second population of neurons which, from embryonic day 18 onwards, distributes diffusely within the cortical plate. Some neurons of this population show morphological traits of immaturity, while others show complete dendritic arborization. The definitive pattern of distribution of calbindin-immunoreactive neurons is achieved by postnatal day 22. Infragranular layers contain intensely-immunoreactive cells whose numerical density decreases during postnatal development, whereas in supragranular layers similar neurons are interspersed among numerous faintly-stained neurons. Parvalbumin is detected for the first time at postnatal day 6, within a small group of neurons located in cortical layer V, and extends afterwards through the whole thickness of the cerebral cortex. At this same postnatal stage, groups of immunoreactive puncta are also found in layer IV of the somatosensory cortex; these puncta increase in density progressively and, at embryonic day 13, immunoreactive cells appear also grouped at this level. At this postnatal age, parvalbumin immunostaining delineates the somatosensory map in cortical layer IV. From this stage to adulthood, the number of immunoreactive neurons increases in the whole thickness of the somatosensory cortex. Barrels in layer IV become less distinct as immunoreactive cells and processes invade the septa. Layer IV in the adult somatosensory cortex appears more densely populated by parvalbumin immunoreactive neurons and puncta than in the surrounding areas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF01181587 | DOI Listing |
J Neurochem
January 2025
Core Facility Small Animal MRI, Ulm University, Ulm, Germany.
Proton magnetic resonance spectroscopy (MRS) offers a non-invasive, repeatable, and reproducible method for in vivo metabolite profiling of the brain and other tissues. However, metabolite fingerprinting by MRS requires high signal-to-noise ratios for accurate metabolite quantification, which has traditionally been limited to large volumes of interest, compromising spatial fidelity. In this study, we introduce a new optimized pipeline that combines LASER MRS acquisition at 11.
View Article and Find Full Text PDFJ Biomed Opt
January 2025
TU Dresden, Carl Gustav Carus Faculty of Medicine, Anesthesiology and Intensive Care Medicine, Clinical Sensing and Monitoring, Dresden, Germany.
Significance: The precise identification and preservation of functional brain areas during neurosurgery are crucial for optimizing surgical outcomes and minimizing postoperative deficits. Intraoperative imaging plays a vital role in this context, offering insights that guide surgeons in protecting critical cortical regions.
Aim: We aim to evaluate and compare the efficacy of intraoperative thermal imaging (ITI) and intraoperative optical imaging (IOI) in detecting the primary somatosensory cortex, providing a detailed assessment of their potential integration into surgical practice.
Neurophotonics
January 2025
Weill Cornell Medicine, Department of Neurological Surgery, New York, United States.
Significance: Despite the availability of various anti-seizure medications, nearly 1/3 of epilepsy patients experience drug-resistant seizures. These patients are left with invasive surgical options that do not guarantee seizure remission. The development of novel treatment options depends on elucidating the complex biology of seizures and brain networks.
View Article and Find Full Text PDFIntroduction: CLN8-Batten disease is a rare neurodegenerative disorder characterized phenotypically by progressive deterioration of motor and cognitive abilities, visual symptoms, epileptic seizures, and premature death. Mutations in CLN8 result in characteristic Batten disease symptoms and brain-wide pathology including accumulation of lysosomal storage material, gliosis, and neurodegeneration. Recent investigations of other subtypes of Batten disease (CLN1, CLN3, CLN6) have emphasized the influence of biological sex on disease and treatment outcomes; however, little is known about sex differences in the CLN8 subtype.
View Article and Find Full Text PDFScience
January 2025
Laboratory for Bionic Integration, Department of Biomedical Engineering, Lerner Research Institute and Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.
Precise cortical microstimulation improves tactile experience in brain-machine interfaces.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!