Formation of the peripheral nervous system during tail regeneration in urodele amphibians: ultrastructural and immunohistochemical studies of the origin of the cells.

J Exp Zool

Laboratoire de Biologie de la Différenciation Cellulaire, URA-CNRS 179, Faculté des Sciences de Luminy, Marseille, France.

Published: December 1992

In the regenerating newt tail, epimorphic regeneration--which recapitulates morphologically normal embryonic development--proceeds along a rostrocaudal differentiation gradient. Innervation of the new myomeres results from the spinal roots of segments rostral to the amputation plane and from ventral roots emerging from the lateroventral region of the regenerating spinal cord, in which motor neurons are differentiating. Electron microscopy and an indirect immunofluorescence study with anti-glial fibrillary acid protein (GFAP) confirm that the ventrolateral part of the regenerated ependymal tube gives rise to cells of the ventral root sheath and the spinal ganglia. Anti-GFAP and anti-neurofilament antibodies showed that ependymoglial cells and Schwann cells may play a role in neuronal pathfinding by helping guide and stabilize pioneering axons as they extend toward the myomeres. The carbohydrate epitope NC-1 is expressed in the spinal cord, in sheath cells of the spinal ganglia and in the non-myelin-forming Schwann cells of the peripheral nervous system. L1, a Ca++ independent neural cell adhesion molecule, was detected in the axonal compartments of the regenerating spinal cord, on immature and/or non-myelin-forming Schwann cells within the peripheral nervous system (PNS), and on nerve fibers within the regenerate. These immunohistochemical observations collectively support the hypothesis that Schwann cells already present in the blastema could be involved in organizing neural pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jez.1402640307DOI Listing

Publication Analysis

Top Keywords

schwann cells
16
peripheral nervous
12
nervous system
12
spinal cord
12
cells
8
regenerating spinal
8
spinal ganglia
8
non-myelin-forming schwann
8
cells peripheral
8
spinal
6

Similar Publications

Extracellular vesicles from pancreatic cancer and its tumour microenvironment promote increased Schwann cell migration.

Br J Cancer

January 2025

Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.

Background: Pancreatic ductal adenocarcinoma (PDAC) exhibits a high frequency of neural invasion (NI). Schwann cells (SCs) have been shown to be reprogrammed to facilitate cancer cell migration and invasion into nerves. Since extracellular vesicles (EVs) affect the tumour microenvironment and promote metastasis, the present study analysed the involvement of EVs from pancreatic cancer cells and their microenvironment in altering SC phenotype as part of the early events in the process of NI.

View Article and Find Full Text PDF

BoNT/Action beyond Neurons.

Toxicon

January 2025

National Council of Research (CNR), Institute of Biochemistry and Cell Biology, 00015 Monterotondo (RM), Italy.

Botulinum neurotoxin type A (BoNT/A) has expanded its therapeutic uses beyond neuromuscular disorders to include treatments for various pain syndromes and neurological conditions. Originally recognized for blocking acetylcholine release at neuromuscular junctions, BoNT/A's effects extend to both peripheral and central nervous systems. Its ability to undergo retrograde transport allows BoNT/A to modulate synaptic transmission and reduce pain centrally, influencing neurotransmitter systems beyond muscle control.

View Article and Find Full Text PDF

Nimodipine is the current gold standard in the treatment of subarachnoid hemorrhage, as it is the only known calcium channel blocker that has been proven to improve neurological outcomes. In addition, nimodipine exhibits neuroprotective properties in vitro under various stress conditions. Furthermore, clinical studies have demonstrated a neuroprotective effect of nimodipine after vestibular schwannoma surgery.

View Article and Find Full Text PDF

Deletion and duplication in the human 16p11.2 chromosomal region are closely linked to neurodevelopmental disorders, specifically autism spectrum disorder. Data from neuroimaging studies suggest white matter microstructure aberrations across these conditions.

View Article and Find Full Text PDF

: Charcot-Marie-Tooth (CMT) disease is an inherited peripheral neuropathy primarily involving motor and sensory neurons. Mutations in INF2, an actin assembly factor, cause two diseases: peripheral neuropathy CMT-DIE (MIM614455) and/or focal segmental glomerulosclerosis (FSGS). These two phenotypes arise from the progressive degeneration affecting podocytes and Schwann cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!