Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1001/archotol.1965.00760010112009 | DOI Listing |
Front Neurol
December 2024
Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden.
Background: There still exists controversy about whether the healthy human middle ear mucosa is sterile or if it may harbor a diverse microbiome. Considering the delicacy of the human round window membrane (RWM), different mechanisms may exist for avoiding inner ear pathogen invasion causing sensorineural deafness. We re-analyzed archival human RWMs using light and transmission electron microscopy after decalcification to determine if bacteria are present in clinically normal human middle ears.
View Article and Find Full Text PDFJ Vis Exp
November 2024
Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins University School of Medicine.
The living human inner ear is challenging to study because it is encased within dense otic capsule bone that limits access to biological tissue. Traditional temporal bone histopathology methods rely on lengthy, expensive decalcification protocols that take 9-10 months and reduce the types of tissue analysis possible due to RNA degradation. There is a critical need to develop methods to access fresh human inner ear tissue to better understand otologic diseases, such as Ménière's disease, at the cellular and molecular level.
View Article and Find Full Text PDFFront Neurosci
October 2023
Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States.
Human temporal bones (HTBs) are invaluable resources for the study of otologic disorders and for evaluating novel treatment approaches. Given the high costs and technical expertise required to collect and process HTBs, there has been a decline in the number of otopathology laboratories. Our objective is to encourage ongoing study of HTBs by outlining the necessary steps to establish a pipeline for collection and processing of HTBs.
View Article and Find Full Text PDFInt J Mol Sci
May 2023
Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg/Saar, Germany.
TRPC channels are critical players in cochlear hair cells and sensory neurons, as demonstrated in animal experiments. However, evidence for TRPC expression in the human cochlea is still lacking. This reflects the logistic and practical difficulties in obtaining human cochleae.
View Article and Find Full Text PDFJ Vis Exp
May 2022
Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins University School of Medicine.
Histopathologic analysis of human temporal bone sections is a fundamental technique for studying inner and middle ear pathology. Temporal bone sections are prepared by postmortem temporal bone harvest, fixation, decalcification, embedding, and staining. Due to the density of the temporal bone, decalcification is a time-consuming and resource-intensive process; complete tissue preparation may take 9-10 months on average.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!