Download full-text PDF

Source

Publication Analysis

Top Keywords

[acquired diffused
4
diffused ichthyosis
4
ichthyosis initial
4
initial manifestation
4
manifestation broncho-pulmonary
4
broncho-pulmonary cancer]
4
[acquired
1
ichthyosis
1
initial
1
manifestation
1

Similar Publications

Background: Diffusion-derived 'vessel density' (DDVD) is a surrogate of the area of micro-vessels per unit tissue. DDVD is calculated according to: DDVD (b0b50) = Sb0/ROIarea0 - Sb50/ROIarea50, where Sb0 and Sb50 refer to the tissue signal when is 0 or 50 s/mm. Due to the complexity of pre-eclampsia (PE), even a combination of risk factors and available tests cannot accurately diagnose or predict PE.

View Article and Find Full Text PDF

In contrast to blood-oxygenation level-dependent (BOLD) functional MRI (fMRI), which relies on changes in blood flow and oxygenation levels to infer brain activity, diffusion fMRI (DfMRI) investigates brain dynamics by monitoring alterations in the apparent diffusion coefficient (ADC) of water. These ADC changes may arise from fluctuations in neuronal morphology, providing a distinctive perspective on neural activity. The potential of ADC as an fMRI contrast (ADC-fMRI) lies in its capacity to reveal neural activity independently of neurovascular coupling, thus yielding complementary insights into brain function.

View Article and Find Full Text PDF

Characterization of diffuse lung function in children with pneumonia.

Front Pediatr

January 2025

Pediatric Respiratory Medicine Department, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.

Background: infection accounts for a high proportion of community-acquired pneumonia and the incidence rate of severe pneumonia (MPP) has increased year by year. This study investigated the changes in lung diffusion function after infection, compared the lung diffusion and ventilation function of children with mild (MMPP) or severe pneumonia (SMPP) infections, and explored their clinical significance.

Objective: To study the changes in pulmonary ventilation and pulmonary diffusion function in children with MPP, and explore their clinical significance.

View Article and Find Full Text PDF

Accelerated MR cell size imaging through parallel acquisition technique (PAT) and simultaneous multi-slice (SMS) with local principal component analysis (LPCA) enhancement.

Magn Reson Imaging

January 2025

Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No.37 Guo Xue Alley, Chengdu, Sichuan 610041, China. Electronic address:

Microstructural parameters are essential in tumor research, aiding in the understanding tumor pathogenesis, grading, and therapeutic efficacy. The imaging microstructural parameters using limited spectrally edited diffusion (IMPULSED) model is the most widely used MR cell size imaging technique, demonstrating success in measuring microstructural parameters of solid tumors in vivo. However, its clinical application is limited by the longer scan times required for both pulsed gradient spin-echo (PGSE) and multiple oscillating gradient spin-echo (OGSE) acquisitions across a range of b-values, which can be burdensome for patients and disrupt clinical workflows.

View Article and Find Full Text PDF

Purpose: The aim of the work is to develop a cascaded diffusion-based super-resolution model for low-resolution (LR) MR tagging acquisitions, which is integrated with parallel imaging to achieve highly accelerated MR tagging while enhancing the tag grid quality of low-resolution images.

Methods: We introduced TagGen, a diffusion-based conditional generative model that uses low-resolution MR tagging images as guidance to generate corresponding high-resolution tagging images. The model was developed on 50 patients with long-axis-view, high-resolution tagging acquisitions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!