This study demonstrates that exposure to alcohol during a period of rapid brain growth can lead to severe and permanent deficits in the number of granule cells and mitral cells in the main olfactory bulb. Sprague-Dawley rat pups were reared artificially and were administered alcohol over postnatal days (PD) 4 through 9, a period of brain development comparable to part of the human third trimester. The daily alcohol dose of 6.6 g/kg was concentrated into two of the twelve daily feedings, producing high peak blood alcohol concentrations followed by near total clearance. Pups were either sacrificed on PD10 or were allowed to grow to adulthood and sacrificed on PD115. The total number of granule cells and mitral cells in the main olfactory bulb were estimated with the aid of unbiased stereological principles and systematic sampling techniques. Exposure to alcohol resulted in significant reductions in the number of both granule cells and mitral cells on PD10. Significant deficits in both neuronal populations remained on PD115. The results support the hypothesis that alcohol exposure can kill developing neurons and lead to permanent neuronal deficits. Substantial developmental changes also occurred in the total number of mitral cells and granule cells between PD10 and PD115 in the control groups. In untreated rats, the number of granule cells increased from 2.20 x 10(6) on PD10 to 5.06 x 10(6) on PD115, while the number of mitral cells decreased from 5.30 x 10(4) to 4.33 x 10(4) over the same time period. These results demonstrate that there is a natural loss of mitral cells during postnatal development at the same time that granule cell number is increasing.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cne.903240408DOI Listing

Publication Analysis

Top Keywords

mitral cells
28
granule cells
24
number granule
20
cells mitral
16
cells
13
olfactory bulb
12
alcohol exposure
8
number
8
exposure alcohol
8
cells main
8

Similar Publications

The hypertension patient population has doubled since 1990, affecting 1.3 billion globally and >75% live in low-and middle-income countries. Angiotensin Converting Enzyme Inhibitors (ACEI) and Angiotensin Receptor Blockers (ARB) are the most prescribed drugs (>160 million times in the US), but mortality increased >30% since 1990s globally.

View Article and Find Full Text PDF

Background: The human microbiome is crucial in regulating intestinal and systemic functions. While its role in cardiovascular disease is better understood, the link between intestinal microbiota and valvular heart diseases (VHD) remains largely unexplored.

Methods: Peer-reviewed studies on human, animal or cell models analysing gut microbiota profiles published up to April 2024 were included.

View Article and Find Full Text PDF

Percutaneous valve implantation or surgical replacement with mechanical or biological valves are standard therapies for severe valvular heart diseases. Prosthetic valve thrombosis, though rare, is a serious complication, particularly with mechanical prostheses. This study aimed to investigate the predictive value of platelet volume parameters, including mean platelet volume (MPV), platelet distribution width (PDW), and platelet-large cell ratio (P-LCR), for valvular thrombosis risk in patients undergoing valve replacement therapy.

View Article and Find Full Text PDF

BACKGROUND Primary cardiac malignancies are extremely rare, with an incidence of 0.07% on autopsy series. Primary sarcomas represent up to 95% of malignant neoplasms, with myxofibrosarcomas accounting for only 10%.

View Article and Find Full Text PDF

Although animals can reliably locate and recognize odorants embedded in complex environments, the neural circuits for accomplishing these tasks remain incompletely understood. Adaptation is likely to be important as it could allow neurons in a brain area to adjust to the broader sensory environment. Adaptive processes must be flexible enough to allow the brain to make dynamic adjustments, while maintaining sufficient stability so that organisms do not forget important olfactory associations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!