Using the polymerase chain reaction and single-strand conformation polymorphism analysis, p53 gene mutations were examined in 24 cases of ovarian tumor including 14 ovarian carcinomas and 2 borderline cases of common epithelial type, 7 germ cell tumors, and one stromal tumor. Abnormal bands indicating mutations were detected in 12 (50%) of the cases examined, being present most frequently in common "epithelial" ovarian carcinoma (71%, 10/14). One case each of squamous cell carcinoma originating in a dermoid cyst and anaplastic dysgerminoma were positive for mutation. Direct sequencing confirmed 12 mutations and revealed G-->A and G-->C nucleotide changes in 5 and 3 cases (42% and 25%), respectively. The mutation was localized at the CpG site of the gene in 3 cases. Immunohistochemical examination of p53 protein in 21 cases and DNA flow-cytometrical analysis in 17 cases were also performed. Nuclear accumulation of the p53 protein and DNA aneuploidy pattern were detected in 11 (52%) and 9 (53%) cases, respectively. These were significantly correlated with p53 gene mutation (P < 0.01 and P < 0.05, respectively; Fisher's exact test). Neither mutation of the p53 gene, nuclear accumulation of p53 protein nor DNA aneuploidy was detected in borderline cases of common "epithelial" type, typical dysgerminoma and immature teratoma. These results suggest that p53 gene mutation, nuclear accumulation of the protein and the DNA aneuploidy pattern are events occurring almost simultaneously in the progression of ovarian tumors, and that p53 abnormalities seem to be correlated with a high grade of malignancy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5918982PMC
http://dx.doi.org/10.1111/j.1349-7006.1992.tb02010.xDOI Listing

Publication Analysis

Top Keywords

p53 gene
20
nuclear accumulation
16
p53 protein
16
dna aneuploidy
16
gene mutation
12
accumulation p53
12
protein dna
12
p53
10
cases
9
borderline cases
8

Similar Publications

Background: Hypoxia in tumor cells is linked to increased drug resistance and more aggressive behavior. In pancreatic cancer, the tumor microenvironment is notably hypoxic and exhibits strong immunosuppressive properties. Given that immunotherapy is now approved for pancreatic cancer treatment, further understanding of how pancreatic tumor cell hypoxia influences T-cell cytotoxicityis essential.

View Article and Find Full Text PDF

Difficult-to-heal wounds management accounts for about 4% of healthcare costs, highlighting the need for innovative solutions. Extracellular signals drive cell proliferation during tissue regeneration, while epigenetic mechanisms regulate stem cell homeostasis, differentiation, and skin repair. Exploring epigenetic regulation in adipose-derived stem cells (ADSCs) holds promise for improving skin injury treatments.

View Article and Find Full Text PDF

Reactive oxygen species (ROS)-sensitive polymers are extensively used in cancer therapies. However, the ROS levels in the tumor microenvironment are often insufficient to trigger an adequate therapeutic response. Herein, we report a cinnamaldehyde ()-based ROS-responsive cationic polymer () and demonstrate its high efficiency in gene delivery and tumor cell growth inhibition.

View Article and Find Full Text PDF

Background: Aggressive Variant Prostate Cancers (AVPCs) are incurable malignancies. Platinum-based chemotherapies are used for the palliative treatment of AVPC. The Polycomb Repressive Complex 2 (PRC2) promotes prostate cancer progression histone H3 Lysine 27 tri-methylation (H3K27me3).

View Article and Find Full Text PDF

To directly examine the interplay between mutant p53 or Mdm2 and wild type p53 in gene occupancy and expression, an integrated RNA-seq and ChIP-seq analysis was performed in vivo using isogenically matched mouse strains. Response to radiation was used as an endpoint to place findings in a biologically relevant context. Unexpectedly, mutant p53 and Mdm2 only inhibit a subset of wild type p53-mediated gene expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!