The cellular mechanism of corneal wound contraction after radial keratotomy (RK) was studied in a feline eye model. A total of 10 cat eyes were evaluated at various times from 0-30 days after surgery. Changes in the distribution of intracellular filamentous actin, nonmuscle myosin, alpha-actinin, surface membrane alpha 5 beta 1 integrin, and extracellular fibronectin were studied using immunofluorescence and laser confocal and electron microscopy. From day 3-7, staining for fibronectin increased along the wound margin. By day 7, keratocytes adjacent to the wound margin showed increased f-actin staining with intense staining for fibronectin compared with normal keratocytes. Myosin and alpha 5 beta 1 integrin expression was very weak at this time; alpha-actinin was not found. By day 14, fibroblasts within the wound formed f-actin microfilament bundles (stress fibers) which colocalized with fibronectin. Wound-healing fibroblasts also stained positively for alpha 5 beta 1 integrin, myosin, and alpha-actinin (the latter two were colocalized). The presence of myosin and alpha-actinin in the wound fibroblasts and the re-organization of f-actin into stress fibers by day 14 correlated with the development of wound contraction. A comparison of the cellular distribution of actin, myosin, and alpha-actinin with alpha 5 beta 1 integrin 14 days after injury suggested that integrin was localized along stress fiber bundles during wound contraction. The data from this study suggest that modulation of wound gape during healing of RK wounds may involve transformation of the corneal keratocyte to a myofibroblast-like cell and the subsequent formation of intracellular stress fibers composed of f-actin, nonmuscle myosin, and alpha-actinin. Based on the colocalization of fibronectin filaments and f-actin filaments and the unique distribution of alpha 5 beta 1 integrin, these findings support the hypothesis that the tension within the wound is generated by the formation of intracellular stress fibers and the interactions between stress fibers and the extracellular matrix, mediated by specific membrane receptor molecules.
Download full-text PDF |
Source |
---|
Food Chem
January 2025
Shenzhen Key Laboratory of Food Nutrition and Health, Guangdong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China. Electronic address:
This work aimed to elucidate the deterioration mechanisms of shrimp surimi gels during refrigerated storage, and the regulatory mechanisms of epigallocatechin-3-gallate loaded cyclodextrin-based metal-organic framework (EGCG@CD-MOF) as a model antioxidant. Labele-free proteomics provided a quantitative analysis of the differential proteomic signatures of degraded proteins. Structural proteins, like myosin, paramyosin, titin, laminin, and α-actinin, along with calcium regulatory proteins, like calcineurin and sarcoplasmic calcium-binding protein were found to be highly susceptible to oxidative degradation during refrigeration.
View Article and Find Full Text PDFCell Mol Biol Lett
January 2025
School of Medicine, Shanghai University, Shanghai, 200444, China.
Background: Interfacial heterogeneity is widely explored to reveal molecular mechanisms of force-mediated pathways due to biased tension. However, the influence of cell density,, curvature, and interfacial heterogeneity on underlying pathways of mechanotransduction is obscure.
Methods: Polydimethylsiloxane (PDMS)-based stencils were micropatterned to prepare the micropores for cell culture.
Cytoskeleton (Hoboken)
January 2025
Department of Life Science, Faculty of Science, Gakushuin University, Mejiro, Tokyo, Japan.
Cytokinesis in animal and fungal cells requires the contraction of actomyosin-based contractile rings formed in the division cortex of the cell during late mitosis. However, the detailed mechanism remains incompletely understood. Here, we aim to develop a novel cell-free system by encapsulating cell extracts obtained from fission yeast cells within lipid vesicles, which subsequently leads to the formation of a contractile ring-like structure inside the vesicles.
View Article and Find Full Text PDFFront Cell Dev Biol
September 2024
Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States.
Our knowledge of the assembly and dynamics of the cytokinetic contractile ring (CR) in animal cells remains incomplete. We have previously used super-resolution light microscopy and platinum replica electron microscopy to elucidate the ultrastructural organization of the CR in first division sea urchin embryos. To date, our studies indicate that the CR initiates as an equatorial band of clusters containing myosin II, actin, septin and anillin, which then congress over time into patches which coalesce into a linear array characteristic of mature CRs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!