SOLDER CONNECTION FAILURE IN BRIDGES.

Northwest Dent

Published: December 1996

Download full-text PDF

Source

Publication Analysis

Top Keywords

solder connection
4
connection failure
4
failure bridges
4
solder
1
failure
1
bridges
1

Similar Publications

Stretchable and adhesive bilayers for electrical interfacing.

Mater Horiz

January 2025

State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.

Article Synopsis
  • Integrated stretchable devices face issues with electrical performance due to debonding at connections between soft and rigid modules under stress.
  • A new conductive and adhesive bilayer interface connects these modules effectively, using a combination of a SEBS elastomer layer and a SEBS-liquid metal composite layer.
  • This innovative interface allows for impressive strain capabilities and maintains high electrical conductivity (3.7 × 10 S m) even when stretched, paving the way for practical applications in wearable and implantable bioelectronics.
View Article and Find Full Text PDF

Stainless steel core plates (SSCPs) show great potential for modular construction due to their superiority of excellent mechanical properties, light weight, and low cost over traditional concrete and honeycomb structures. During the brazing process of SSCP joints which connect the skin panel and core tubes, it is difficult to keep an even heat flow of inert gas in the vast furnace, which can lead to partially missing solder defects in brazing joints. Pulsed eddy current imaging (PECI) has demonstrated feasibility for detecting missing solder defects, but various factors including lift-off variation and image blurring can deteriorate the quality of C-scan images, resulting in inaccurate evaluation of the actual state of the brazed joints.

View Article and Find Full Text PDF

Dual-tuned floating solenoid balun for multi-nuclear MRI and MRS.

Magn Reson Imaging

January 2025

Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA. Electronic address:

Common-mode currents can degrade the RF coil performance and introduce potential safety hazards in MRI. Baluns are the standard method to suppress these undesired common-mode currents. Specifically, floating baluns are preferred in many applications because they are removable, allow post-installation adjustment and avoid direct soldering on the cable.

View Article and Find Full Text PDF

Chip bonding, an essential process in power semiconductor device packaging, commonly includes welding and nano-silver sintering. Currently, most of the research on chip bonding technology focuses on the thermal stress analysis of tin-lead solder and nano-silver pressure-assisted sintering, whereas research on the thermal stress analysis of the nano-silver pressureless sintering process is more limited. In this study, the pressureless sintering process of nano-silver was studied using finite element software, with nano-silver as an interconnect material.

View Article and Find Full Text PDF

Microwave Hybrid Sintering and Soldering of Cu-Cr-W Composite Material for Reactive Power Breakers.

Materials (Basel)

September 2024

Department of Water Transport, Faculty of Operation and Economics of Transport and Communications, University of Zilina, 01026 Zilina, Slovakia.

Over 60% of reported failures for reactive power compensation systems are given for damage to electrical circuit breaker contacts. This paper presents a study on the development of microwave technology for sintering of W-Cu-Cr alloys at 1012 °C for 65 min using 623.38 W microwave power, as well as microwave joining at 231 °C of the W-Cu-Cr composite material on body contact using 475 W microwave power for 55 s.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!