Autoradiographic evidence for the occlusion of rat brain dopamine D3 receptors in vivo.

Eur J Pharmacol

Janssen Research Foundation, Department of Biochemical Pharmacology, Beerse, Belgium.

Published: August 1992

AI Article Synopsis

  • The study focused on the binding of [125I]iodosulpride to dopamine D3 receptors in rat brain sections, revealing a high density of these receptors in the islands of Calleja.
  • The presence of domperidone, a D2 receptor blocker, allowed for selective identification of D3 receptors, but tight binding to an endogenous inhibitor was observed when preincubation was not done.
  • The findings suggest that D3 receptors are predominantly occupied by dopamine in vivo, raising questions about the impact of external compounds on D3 receptor occupancy.

Article Abstract

[125I]Iodosulpride binding was studied in frontal rat brain sections by quantitative autoradiography. Using preincubated (= washed) sections, selective labelling and identification of dopamine D3 receptors was obtained using 0.2 nM [125I]iodosulpride in the presence of 100 nM domperidone for the occlusion of the D2 receptors. A high density of D3 receptors was noticed in the islands of Calleja. When preincubation of the sections was omitted, no D3 receptor labelling could be achieved, indicating tight binding to the receptor of an endogenous inhibitor. Such a tight receptor occupancy was not observed for the D2 receptor and various other neurotransmitter receptors. The occlusion of the D3 receptor could be prevented by tetrabenazine-induced monoamine depletion of the rats. It can be concluded, therefore, that D3 receptors are massively occupied by a monoamine, likely to be dopamine. This observation prompts the question to what extent dopamine D3 receptors can become occupied in vivo by systematically applied exogenous compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0014-2999(92)90196-bDOI Listing

Publication Analysis

Top Keywords

dopamine receptors
12
rat brain
8
receptors
7
receptor
5
autoradiographic evidence
4
evidence occlusion
4
occlusion rat
4
dopamine
4
brain dopamine
4
receptors vivo
4

Similar Publications

Dopamine can play opposing physiological roles depending on the receptor subtype. In the fruit fly , and encode the D- and D-like receptors, respectively, and are reported to oppositely regulate intracellular cAMP levels. Here, we profiled the expression and subcellular localization of endogenous Dop1R1 and Dop2R in specific cell types in the mushroom body circuit.

View Article and Find Full Text PDF

Adolescence is a developmental period marked by significant alterations to brain neurobiology and behavior. Adolescent nicotine use disrupts developmental trajectories and increases vulnerability to maladaptive drug-taking in adulthood. The mesolimbic dopamine (DA) system, including the nucleus accumbens core (NAc), mediates the reinforcing effects of nicotine.

View Article and Find Full Text PDF

Up to 45% of patients with Parkinson's disease (PD) experience impulse control disorders (ICDs), characterized by a loss of voluntary control over impulses, drives or temptations. This study aimed to investigate whether previously identified genetic and psychiatric risk factors interact towards the development of ICDs in PD. A total of 278 de novo PD patients (ICD-free at enrollment) were selected from the Parkinson's Progression Markers Initiative database.

View Article and Find Full Text PDF

Recreational use of nitrous oxide (NO) has risen dramatically over the past decades. This study aimed to examine its rewarding effect and the underlying mechanisms. The exposure of mice to a subanesthetic concentration (20%) of NO for 30 min for 4 consecutive days paired with NO in the morning and paired with the air in the afternoon produced apparent rewarding behavior in the conditioned place preference (CPP) paradigm.

View Article and Find Full Text PDF

Trace amine signaling in zebrafish models: CNS pharmacology, behavioral regulation and translational relevance.

Eur J Pharmacol

January 2025

Institute of Translational Biomedicine (ITBM), St. Petersburg State University, St. Petersburg, Russia; Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China. Electronic address:

Tyramine, β-phenylethylamine, octopamine and other trace amines are endogenous substances recently recognized as important novel neurotransmitters in the brain. Trace amines act via multiple selective trace amine-associated receptors (TAARs) of the G protein-coupled receptor family. TAARs are expressed in various brain regions and modulate neurotransmission, neuronal excitability, adult neurogenesis, cognition, mood, locomotor activity and olfaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!