We have developed a novel system to study transcription by yeast RNA polymerase I (Pol I) of mutated rDNA units within the chromosomal context. For this, complete rDNA units carrying specific oligonucleotide tags in both the 17S and 26S rRNA genes were integrated into the chromosomal rDNA locus. Using this novel system, we analysed the action of the rDNA enhancer in stimulating transcription within the chromosomal context. We found that the enhancer acts as a stimulatory element in both directions, mainly on its two most proximal rRNA operons. Deletion of the sequences between the enhancer and the Pol I promoter in the tagged, integrated unit indicated that this part of the intergenic spacer contains no other transcriptional regulatory elements for Pol I. We also applied the system to study the function of the rDNA binding protein RBP1/REB1. For this purpose, we analysed tagged units in which either one or both of the binding sites for this protein have been inactivated. We found that mutations of both binding sites strongly diminish the transcription of the adjacent operon. The protein is hypothesized to play a crucial role in keeping the chromosomal rDNA units in an optimal spatial configuration by anchoring consecutive enhancers and promoters to the nucle(ol)ar matrix.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC557042PMC
http://dx.doi.org/10.1002/j.1460-2075.1992.tb05568.xDOI Listing

Publication Analysis

Top Keywords

system study
12
chromosomal context
12
binding sites
12
rdna units
12
study transcription
8
transcription yeast
8
yeast rna
8
rna polymerase
8
novel system
8
chromosomal rdna
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!