Changes in PCB serum concentrations among capacitor manufacturing workers.

Environ Res

Division of Environmental and Occupational Medicine, Mount Sinai School of Medicine, New York, New York 10029.

Published: October 1992

To assess the elimination of PCBs in humans, PCB concentrations in serum from 165 capacitor manufacturing workers were measured twice within a 46-month interval (March 1976-December 1979). Use of PCBs at the facility was entirely eliminated in 1977. PCB congeners with lower chlorination (LPCBs--mainly tri- and tetrachlorobiphenyls) had decreased in concentration, with six of the LPCB 7 peaks observed by packed column GC showing average reductions of 25-90%. Higher chlorinated PCBs did not decrease significantly as a whole, although three of the six constituent congener peaks showed some decline (15-25%). As expected, decreases in PCB congener concentrations were associated with chlorine substitution configurations known to be amenable to metabolism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0013-9351(05)80240-3DOI Listing

Publication Analysis

Top Keywords

capacitor manufacturing
8
manufacturing workers
8
changes pcb
4
pcb serum
4
serum concentrations
4
concentrations capacitor
4
workers assess
4
assess elimination
4
elimination pcbs
4
pcbs humans
4

Similar Publications

Thermophysical properties of graphene reinforced with polymethyl methacrylate nanoparticles for technological applications: a molecular model.

J Mol Model

January 2025

Escuela Superior de Física y Matemáticas, IPN S/N, Edificio 9 de la Unidad Profesional "Adolfo López Mateos", Col. Lindavista, Alc. Gustavo A. Madero, 07738, Mexico City, Mexico.

Context: "Nanostructure of graphene-reinforced with polymethyl methacrylate" (PMMA-G), and vice versa, is investigated using its molecular structure, in the present work. The PMMA-G nanostructure was constructed by bonding PMMA with graphene nanosheet in a sense to get three different configurations. Each configuration consisted of polymeric structures with three degrees of polymerization (such as monomers, dimers, and trimers polymers, respectively).

View Article and Find Full Text PDF

Modern-day applications demand onboard electricity generation that can be achieved using piezoelectric phenomena. Reducing the dimensionality of materials is a pathway to enhancing the piezoelectric properties. Transition-metal dichalcogenides have been shown to exhibit high piezoelectricity.

View Article and Find Full Text PDF

Highly Sensitive Linear Triaxial Force Sensor Based on Multimodal Sensing for 3D Pose Reconstruction.

Small Methods

January 2025

National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, 200240, China.

Flexible sensing offers real-time force monitoring, presenting a versatile and effective solution for dexterous manipulation, healthcare, environmental exploration, and perception of physical properties. Nonetheless, a limitation of many existing flexible force sensors stems from their isotropic structure or material properties, preventing them from simultaneously detecting both the direction and magnitude of the applied force. Herein, a high-performance 3D force sensor based on orthogonal multimodal sensing, the cancellation principle, and the strain effect is proposed.

View Article and Find Full Text PDF

Global-optimized energy storage performance in multilayer ferroelectric ceramic capacitors.

Nat Commun

January 2025

Electronic Materials Research Laboratory & Multifunctional Materials and Structures, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China.

Multilayer ceramic capacitor as a vital core-component for various applications is always in the spotlight. Next-generation electrical and electronic systems elaborate further requirements of multilayer ceramic capacitors in terms of higher energy storage capabilities, better stabilities, environmental-friendly lead-free, etc., where these major obstacles may restrict each other.

View Article and Find Full Text PDF

A Novel Pneudraulic Actuation Method to Enhance Soft Robot Control.

Soft Robot

December 2024

Department of Surgical & Interventional Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London (KCL), London, UK.

Modern industrial and medical applications require soft actuators with practical actuation methods, capable of precision control and high-speed performance. Within the realm of medical robotics, precision and speed imply less complications and reduced operational times. Soft fluidic actuators (SFAs) are promising candidates to replace the current rigid endoscopes due to their mechanical compliance, which offers safer human-robot interaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!