The inhibitory effect of oligomycin was investigated in intact mitochondria through oxidative phosphorylation and uncoupler induced ATPase activity. Results show that oligomycin inhibition curves can be either sigmoidal or hyperbolic depending on experimental conditions and chiefly on the metabolic state of mitochondria with regard to the distribution of mitochondrial endogenous adenine-nucleotides. Active respiration and uncoupler-induced ATPse activity produce sigmoidal titration curves for a high initial ATP : ADP ratio and hyperbolic curves for a low ATP : ADP ratio. Time-dependent inhibitions are observed for the two reactions. The maximal inhibitory action for low concentrations of the inhibitor is delayed by the initial presence of ATP or the possibility of generating from inorganic phosphate before adding oligomycin. Results presented here show that the initial adenine-nucleotide distribution is important for oligomycin sensitivity of energy-linked reactions. Although a limited conformational change of the oligomycin-sensitivity to the inhibitor, it is more likely that a gross structural change of the inner membrane induced by adenine-nucleotides modifies membrane permeability to oligomycin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0300-9084(77)80056-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!